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1 INTRODUCTION

Being poor in a poor country is risky. Not only is income from agriculture or

the informal sector unpredictable, but the constant threat of health or mortality

shocks leaves households vulnerable to serious hardship (Dercon 2004, Collins,

Morduch, Rutherford and Ruthven 2009). In the absence of risk management

tools the poor remain vulnerable to shocks; a typical response to a large income

shock is to take children out of school (Jacoby and Skoufias 1997) and reduce

nutritional intake (Behrman and Deolalikar 1988), particularly for girls (Behrman

and Deolalikar 1990) and women (Dercon and Krishnan 2000).

One widely observed risk coping mechanism is that of risk pooling within

families or communities. Nonmarket risk pooling can be informal (Morduch

2002) or through semiformal institutions that mutualise specific perils such as

funerals (Dercon, De Weerdt, Bold and Pankhurst 2006), health (Jütting 2004)

or fire (Cabrales, Calvó-Armengol and Jackson 2003). However, any risk

pooling within a small community will be subject to a budget constraint, leaving

households vulnerable to shocks that affect the whole community, and may also

be constrained by the limited ability of households to commit to state contingent

transfers.

Contracting with a formal institution, such as an insurer or government, could

break budget and limited commitment constraints but is typically subject to large

deadweight transaction costs and information asymmetries. In practice, formal

insurance in poor countries is underdeveloped or nonexistent, leaving households

exposed to shocks that are not diversifiable within their risk pooling network

(Karlan and Morduch 2009, Section 7).

One major cause for the departure from first best risk sharing between formal

insurers and poor individuals is the cost of ex-post claims processing, known

as loss adjustment. Loss adjustment includes both the cost of verifying that

claims are not fraudulent (auditing, to use the terminology of Townsend (1979))
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and the cost of subsequently paying valid claims. In practice, loss adjustment

costs are substantial for providers of formal indemnity-based insurance such

as reinsurers, insurers and governments.1 However, loss adjustment may be

inexpensive within groups of individuals with intertwined economic or social

lives, or within groups of firms in similar or complementary lines of work.

Formal loss adjustment can generate a substantial variable deadweight cost and

can therefore be a key determinant of the shape, not just the existence, of optimal

insurance arrangements.

Much of the existing insurance design literature characterises efficient bilateral

contracting between an insurer and a single policyholder. The baseline bilateral

insurance contract in this literature is one in which the insurer receives a fixed

premium from the policyholder and, in return, offers full marginal insurance

below a deductible. Originally motivated by Arrow (1963) as the optimal contract

when the insurer set premiums as a defined function of the actuarial value

of a contract, it has since appeared as the optimal contract in models of ex

ante moral hazard (Hölmstrom 1979) and costly state verification both without

(Townsend 1979) and with (Picard 2000) sabotage. There is also a rich literature

motivating and explaining more general forms of bilateral insurance contracts.2

Some authors have investigated multilateral insurance contracting. Arnott and

Stiglitz (1991) consider the case of optimal contracting between an insurer and

multiple agents under ex ante moral hazard where agents can side contract.

However they only consider the case where the insurer sells a bilateral contract to

each agent and do not consider the form of more general multilateral contracts.

Ghatak and Guinnane (1999) and Rai and Sjostrom (2004) both consider models

of multilateral credit contract design with the former allowing costly state

verification and the latter instead allowing agents to send cross reports. However,

both assume that agents are risk neutral and therefore ignore any demand for

formal insurance.
1 See for example Derrig (2002), from a special issue of the Journal of Risk and Insurance, focusing on

insurance fraud.
2 See Dionne, ed (2000) for an introduction to the literature.
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This paper considers optimal multilateral contracting between a risk neutral

insurer and two risk averse agents whose losses are affiliated and where the

cost of loss adjustment, that is auditing and making transfers, is higher for the

insurer than for agents. Auditing is modelled in Townsend’s (1979) deterministic

costly state verification framework; agents are required to send messages to the

insurer, who only learns the true loss incurred by an agent by conducting an audit.

In addition to not auditing or fully auditing the state of the world, the insurer

may partially audit the state by auditing only one loss, rendering the problem a

nontrivial multidimensional extension to Townsend (1979). The deadweight cost

of loss adjustment by the insurer is assumed to increase in both the claim payment

and the number of audits, and extends Arrow’s (1963) single argument actuarial

value cost function to two dimensions. By contrast, agents learn each other’s

losses and may make side transfers to each other at zero cost.

Agents are allowed to collude against the insurer and so, as is common in bilateral

models of deterministic costly state verification, the aggregate net transfer from

insurer to agents depends only on losses audited by the insurer; were the contract

to depend on unaudited information, agents would always collude to send the

jointly most favourable message, sharing the gains between themselves.

In the benchmark model we also allow each agents to increase their ex post loss by

sabotage, without detection by the insurer. Allowing agents to conduct sabotage

constrains the optimal contracts to feature no marginal overinsurance, since there

will always be a no-sabotage contract that dominates any contract with sabotage.

The economic problem is to design an arrangement that utilises the loss

adjustment technology in an efficient fashion. Nonmarket insurance between

agents is inexpensive but subject to a budget constraint. Formal insurance is

not subject to a budget constraint but is expensive. As one might expect, efficient

arrangements involve the agents offering mutual nonmarket insurance and the

insurer offering protection for losses that are large for the group, relative to the

corresponding increase in loss adjustment cost. The formal insurer therefore acts
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as reinsurer to the group who, in turn, can pool uncertainty between themselves

at low informational and transactional cost.

The optimal solution in our benchmark model takes a particularly simple form,

which we term a Generalised Stop Loss contract, named after the Pure Stop Loss

contracts common in markets for reinsurance. For a group of two agents, an

aggregate premium of p0 is paid to the insurer, who in turn makes aggregate

claim payment of max(0, x1 − D1, x2 − D2, x1 + x2 − D12) where x1, x2 are

each agent’s loss and D1, D2, D12 are single and double loss deductibles. This is

the natural multidimensional extension to the bilateral insurance contract which

offers full marginal insurance below a deductible.

Figure 1 shows an isometric projection of the total consumption of two agents

who have jointly purchased a symmetric Generalised Stop Loss contract. The

aggregate consumption schedule in the left pane could be achieved by both

agents purchasing bilateral contracts from an insurer, each offering full marginal

insurance against loss i above a deductible of Di. However the consumption

schedules in the middle and right pane could only be achieved by a contract where

the claim payment to at least one of the agents is conditional on both losses. The

key requirements for multilateral contracting to dominate bilateral contracting

is that the group has access to cheap within-group loss adjustment technology,

enabling cheap within-group monitoring and transfers. As is shown in section 6,

formal insurers can use their contracting power to crowd in risk pooling within

groups, and so within-group limited commitment or enforcement constraints do

not invalidate the group-based approach to insurance.

When the insurer is able to detect sabotage for one loss, thereby removing

the restriction of no marginal overinsurance for that loss, we find that optimal

contracts are similar to Generalised Stop Loss contracts but with marginal

overinsurance on the region for which only that loss is audited. The marginal

overinsurance is optimal since a high loss incurred by one agent is associated

with a high loss incurred by the second agent. This optimal contract is similar
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Figure 1. Aggregate net consumption of agents under a symmetric Generalised Stop Loss
contract with single loss deductibles of D1 = D2 and double loss deductible of
D12

D12 = D1 +D2 D12 > D1 +D2 D12 < D1 +D2

x1x2

c0

to that of model plot area yield index agricultural insurance, in which the

claim payout to all insured farmers within a locality depends on the average

audited yield from a sample of model plots, chosen to be manipulation-free

and statistically representative of the locality (Miranda 1991, Mahul 1999). In

our framework such statistical sample-based indices are only ever optimal if the

insurer can verify whether sabotage has occurred in the model plots. Moreover,

the technology that allows the insurer to verify whether no sabotage has occurred

is valuable, in that it allows a multilateral insurance contract to be put in place

that strictly dominates all Generalised Stop Loss contracts.

The final model investigate the optimal contract when the insurer can condition

claims on a costlessly observable index as well as auditable losses. The optimal

contract is similar to the Index Plus Gap insurance policies of Doherty and Richter

(2002), in which the indemnity-based element offers marginal insurance against

losses net of indexed claim payments. In our multidimensional framework we

find that the insurer pays an indexed payment and that the indemnity-based gap

insurance is of the Generalised Stop Loss form, again based on losses net of

the index claim payment. Pure index insurance is not optimal in general due to

the possibility of the index realisation being good, but the aggregate group losses

being high. In such joint states of the world, it may be optimal for loss adjustment
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to be conducted and a claim payment made (Chapter I).

These models offer a template for insurers wishing to offer efficient insurance

arrangements to poor individuals. First, they should consider contracting with

groups of individuals, economically and socially close enough to have access

to a cheap loss adjustment technology and small enough to able to sustain risk

pooling. Second they should use their contracting power to support nonmarket

insurance between group members wherever possible. Third, they should think

of their role as that of a reinsurer, offering protection when the group as a whole

is unlucky. They should not offer cover for idiosyncratic shocks, as this would

crowd out cheap within-group pooling. Fourth, both cheaply available indices

that are affiliated with losses, and audit technologies that allow an insurer to verify

when sabotage has taken place are valuable for the insurer, since they allow Pareto

dominant insurance contracts to be signed between the insurer and agents.

Stop Loss Reinsurance in the Small and in the Large

These principles are already observable in insurance contracting around the

world.

One example of pooling plus Stop Loss reinsurance is that of the Self-Insurance

Funds (Fondos de Aseguramiento Agrícola) that have been operating in Mexico

since 1988. Under the standardised legal framework farmers may join or create

a Self-Insurance Fund, which allows farmers to pool agricultural uncertainty, but

any such Fund must purchase Stop Loss reinsurance from a licensed insurance

company. In 2004 Agroasemex, a reinsurer owned by the Mexican Government,

sold pure Stop Loss products to 242 groups with total membership of more

than 70,000 farmers (Ibarra 2004). The reinsurance product indemnifies each

Self-Insurance Fund against total Fund losses above a Fund-level deductible.

Unusually, it is a voluntary indemnity-based crop insurance scheme that has been

self-funding in the medium term: as reported by Ibarra (2004), the total insurance
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payout by Agroasemex since inception was 57.7% of the total premium income

by Agroasemex, above the break even net loss ratio of 75%.

The financial structure suggested in this paper for insurers and governments

contracting with poor individuals is surprisingly similar to that observed

between reinsurers and insurers or reinsurers and captive insurance companies

in developed financial markets (Swiss Re 2002). One particularly famous

arrangement that has existed since at least the 18th Century is the global structure

of protection and indemnity (P&I) insurance for shipowners (Bennett 2000). The

thirteen major P&I Clubs and the International Group of P&I clubs (IGP&I)

coordinates not-for-profit mutual liability insurance for approximately 90% of

the worldŠs ocean-going tonnage. The IGP&I then purchases one reinsurance

policy from international reinsurers to protect shipowners worldwide against the

IGP&I incurring a very large loss, which each shipowner is jointly and severally

liable for. The theory of this paper provides a positive interpretation of such a

structure if P&I Clubs, whose members have close economic ties, can conduct

loss adjustment at a lower cost than the external reinsurer.

The rest of the paper is organised as follows. Sections 2 and 3 set up and

characterise optimal contracts in our benchmark model. In Section 4 we allow

the insurer to discriminate between sabotage and raw losses for one agent, in

Section 5 we allow the insurance arrangement to be conditioned on a costlessly

observable index, and in Section 6 we consider the case where agents cannot

commit to a complete state contingent contract. Section 7 concludes. All proofs,

unless otherwise noted in the text, are in the Appendix.
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2 THE BENCHMARK MODEL

2.1 Preferences, Losses, and Information

Two agents contract with a single insurer. Preferences for agent i are represented

by a twice differentiable utility function ui, defined over own consumption ci.

Agents are strictly non-satiated and risk-averse, that is u′i > 0 and u′′i < 0

everywhere for all agents i. The insurer is risk-neutral, maximising expected

profits.

Each agent i has initial wealth wi and is subject to uncertain loss xi which can

take values in the interval [0, x̄]. A state of the world x is a pair of losses x =

(x1, x2) ∈ X where X = [0, x̄] × [0, x̄]. The exogenous cumulative density

function of x is common knowledge and denoted by F (x). F is atomless with

full support on X , and losses are affiliated in the sense of Milgrom and Weber

(1982); that is we can denote the probability density function by f : X → (0,∞)

where

f(x)f(x′) ≤ f(x ∨ x′)f(x ∧ x′) for all x, x′ ∈ X (1)

and x ∧ x′ = (min{xi, x
′
i})2i=1 and x ∨ x′ = (max{xi, x

′
i})2i=1. Loss affiliation

captures the notion that losses xi and xj are everywhere positively correlated, and

will act to ensure that the optimal claim payment when only one loss is audited is

nondecreasing in the loss.

Each agent i observes the realised joint state of the world x costlessly and may

then increase own loss xi by sabotage of si ∈ [0, x̄ − xi]. Sabotage choices

are observed by the other agent and then each agent sends a message mi to the

insurer. The insurer can observe zero, one or both losses by conducting costly

audits. Following Picard (2000), the audit technology does not allow the insurer

to distinguish between raw loss xi and loss due to sabotage si, but is otherwise
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perfect; if the insurer audits agent i (ai = 1), it discovers the total loss xi + si; if

the insurer doesn’t audit agent i (ai = 0), it discovers nothing.3 We will find that

allowing agents to conduct sabotage ensures that optimal contracts will feature

no marginal overinsurance. (We relax the assumption that the insurer cannot

discriminate between raw loss x and sabotage s in Section 4.)

Each agent i makes net transfer θi to the insurer and net side transfer τi to the

other agent. Side transfers are not observable by the insurer. The resulting ex-

post consumption of agent i is denoted by:

ci = wi − xi − si − θi − τi (2)

Loss adjustment, that is auditing and making transfers θi, incurs a deadweight

cost for the insurer. We defer full specification of the deadweight loss

adjustment cost function κ(·) until we have introduced and rewritten the incentive

compatibility constraints in section 2.3.

2.2 Mechanisms and Side Contracts

The ex-post asymmetry in the cost of loss adjustment leads to an implementation

problem similar to that considered by Townsend (1979). However, while

Townsend (1979) considered the form of optimal contracts between an insurer

and a single agent, we will consider the form of an optimal multilateral

mechanism between an insurer and multiple agents.

A mechanism G = ({Mi, ai, θi}i=1,2) will be offered to agents and the insurer

by an independent mechanism designer, where each element has the following

interpretation: Mi is the message space of agent i; ai : M1×M2 → {0, 1} is the

auditing function (audit (1) or no audit (0)); and θi : M1×M2×X → R is the net

3 Our sabotage assumption may be considered as an extreme form of costly state falsification, where
an agent can falsify a loss xi as x′i ≥ xi at cost x′i − xi. Optimal insurance contracts under costly
state falsification, where the marginal cost of falsification is less than unity can feature overpayment
of small and underpayment of large claims (Bond and Crocker 1997, Crocker and Morgan 1998).
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transfer from agent i to the insurer, and is restricted to vary only with messages

and audited losses, not unaudited losses.4 As is common in insurance models

with costly state verification, the insurer is restricted to choose an audit rule that

is a deterministic function of joint messagem.5 If either agent or the insurer reject

G the insurer receives zero profit and each agent i receives reservation utility ūi.

The form of the optimal mechanism will depend on the ability of agents to write

binding side contracts with each other. If agents cannot contract with each other

at all over messagesm, side-transfers τ or the sabotage of losses s then the insurer

can implement full insurance without any auditing in equilibrium:

Proposition 1. If agents cannot side-contract then any consumption schedule

(c1(x), c2(x)) such that each ci is nonincreasing in xi can be implemented by

dominant strategies, with no auditing or sabotage in the equilibrium. If each ci

is strictly decreasing in xi for all xi then the implementation is unique.

The insurer is able to fully extract information by setting up a Prisoner’s Dilemma

game to be played by the agents, where the insurer audits both agents whenever

reports of the total loss disagree, rewards any truthful agent, and punishes

untruthful agents. So long as each ci(x) is nonincreasing in own net loss then

each agent will have no incentive to conduct sabotage, and if ci(x) is strictly

decreasing in own loss then sabotage is never optimal.

If there is no deadweight loss adjustment cost when no audits are conducted,

Proposition 1 implies that the first best, where full insurance is offered to both

risk averse agents with no deadweight loss adjustment cost, can be implemented.

Moreover, unique implementation is possible for a schedule that approximates

full insurance.
4 Formally, the restriction on θi is θi(m1,m2, x) = θi(m1,m2, x

′) for all (m1,m2) ∈ M, x, x′ ∈ X
such that ak(m1,m2)× (xk − x′k) = 0 for k = 1, 2.

5 An exception is Fagart and Picard (1999), who characterise the optimal bilateral insurance contract
under costly state verification when the audit rule is stochastic. However, in their model the global
incentive compatibility constraints do not reduce to a local first order constraint except in the special
case where the risk averse agent has constant absolute risk aversion. In another work Krasa and
Villamil (2000) are able to show that optimal stochastic audit rules reduce to deterministic audit rules
in a model of costly state verification with a form of renegotiation-proofness.
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However, the assumption that agents cannot side contract at all seems unrealistic,

particularly in situations where agents collectively have much to gain from

conspiring against the insurer. We will henceforth assume that some degree of

coordination between agents is possible. Such coordination could be modelled

by an extensive form bargaining game between the agents over messages to be

sent and corresponding side-transfers between agents. Following Laffont and

Martimort (2000) and Rai and Sjostrom (2004) we abstract from this approach,

and allow agents to sign binding side-contracts. We assume that the side-contracts

are enforceable, although we do not specify a court of justice able to enforce such

contracts.6 Any enforcement constraints will be modelled in reduced form as

restrictions on the side-contracts that may be signed. This is a modelling short cut,

which allows us to capture in a static context the reputations of the agents which

would guarantee self-enforceability in a repeated relationship. In the context of

microinsurance, agents are likely to be able to threaten social sanctions, exclusion

from nonmarket insurance or physical violence.

A side contract is a specification of the sabotage si to be performed by each

agent, the message mi to be sent by each agent to the insurer, and the net side-

transfer τi from agent i to j, satisfying τ1 + τ2 ≥ 0. By allowing agents to side

contract, the mechanism designer cannot hope to elicit information by rewarding

an individual agent, as that agent can commit to transfer any such reward to the

other agent. The mechanism of Proposition 1 would unravel, with agents jointly

choosing sabotage amounts and messages with the lowest aggregate transfer to

the insurer, θ0 = θ1 + θ2, and the insurer never detecting the fraud.

Following Rai and Sjostrom (2004) we will consider two extreme classes of side

contracts which differ in the ability of agents to pool uncertainty by committing

to state contingent side transfers. A side contract where agents can fully commit

to a state contingent transfer rule before the state of the world x is realised, is an

ex ante side contract S = ({si,mi, τi}i=1,2) where si : X → X , mi : X →

6 However, note that in many semiformal risk pooling arrangements there is an explicit process for
arbitration and enforcement (Dercon et al. 2006, Jütting 2004, Cabrales et al. 2003).
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Figure 2. Timeline

Accept/reject
Mechanism G

Loss xi Sabotage si

Message mi

Audit ai Transfers θi

Side transfers τi
Cost κ

Ex ante
side contract S

Interim
side contract Sx

Mi and τi : X → R. Under ex ante side contracting agents are able to sign

Pareto optimal side contracts, performing sabotage and sending messages that

maximise joint consumption c0 = c1 + c2 and committing to a Pareto optimal

consumption sharing rule. We consider the case of interim side contracting in

Section 6, where agents are only able to sign binding contracts after the state of

the world is realised. Under interim side contracting agents are able to collude

against the insurer but are not able to commit to a Pareto optimal consumption

sharing rule.

The timing is shown in figure 2.

2.3 Feasibility

Some restrictions on mechanisms are now in order. The mechanism designer will

restrict attention to mechanisms which satisfy certain incentive compatibility and

individual rationality (participation) constraints. Mechanism G and ex ante side

contract S are together individually rational if expected utility for each agent

exceeds the respective reservation utility, and the insurer receives nonnegative

expected profit. Moreover, for a given mechanism G, an ex ante side contract

S will be called incentive compatible if the agents could not sign a side contract

that would be better for both agents:

(IR1) (For individual rationality under ex ante side contracting)

E[θ0]− κ ≥ 0 and E[ui(ci)] ≥ ūi for i = 1, 2.
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(IC1) (For incentive compatibility of an ex ante side contract)

There is no other individually rational side contract which gives strictly

higher expected utilities to both agents.

Under ex ante side contracting the revelation principle holds and allows us to

narrow focus to direct mechanisms, where both agents report the joint total loss

x + s ∈ X . We represent a direct mechanism as G = (a, θ), suppressing the

message space M = M1 ×M2 which is taken to be X ×X . We will denote the

outcomes when messages are truthful as indirect functions of the total loss x+ s.

That is, a(x + s) := a(x + s, x + s), θ(x + s) := θ(x + s, x + s, x + s) and

c(x + s) := w − x − s − θ(x + s) − τ(x + s) for all x ∈ X . For a given side-

contract, the restrictions on mechanisms that guarantee that truth-telling messages

are optimal for the agents will be called incentive compatibility:

(IC2) (For truthful report of the net loss)

There is an incentive compatible side contract with truthful messages,

m1(x+ s) = m2(x+ s) = x+ s for all x+ s ∈ X .

A mechanism G will be called feasible if there exists some ex ante side contract

S which, together with G, satisfies (IR1), (IC1) and (IC2). For a feasible

mechanism we will assume that all parties accept the mechanism and agents sign

a side contract which, together with the mechanism, is individually rational and

incentive compatible with truthful message rule m(x) = (x, x) for all x ∈ X .

Optimality of a mechanism will be taken to mean constrained Pareto dominance

in the following sense. A mechanism will be defined to weakly dominate another

mechanism if for every feasible side contract for the latter mechanism, there is a

feasible side contract for the former mechanism such that the expected utilities

for all agents and the insurer are at least as large as in the other mechanism and

side contract. The former dominates the latter if the weak dominance relation

holds with strict inequality for at least one agent. A mechanism is defined to be

optimal if it is not dominated by any other mechanisms. As usual, the use of
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Pareto dominance in the definition of optimality allows us to abstract from the

question of how the gains from trade should be split. As will become clear, the

optimal form of the contract will not depend on the allocation of gains from trade.

We may now begin to characterise optimal feasible insurance mechanisms. First

we will show that any feasible mechanism is weakly dominated by a mechanism

with no marginal overinsurance, that is where:

x0 + θ0(x) is weakly increasing in each xi, i = 1, 2 (3)

denoting x0 = x1 + x2.

Lemma 1. Any direct feasible mechanism under ex ante side contracting (a, θ) is

weakly dominated by a direct feasible mechanism (a′, θ′) that satisfies condition

(3)

Under a feasible mechanism that satisfies condition (3) and for any incentive

compatible side contract S = (s,m, τ) then s(x) = 0 almost everywhere.7

Therefore without loss of generality we restrict attention to feasible mechanisms

that satisfy condition (3) and incentive compatible side contracts in which s(x) =

(0, 0) for all x ∈ X .

Second we note that θ0 can only vary with audited information, that is losses

that the insurer has learned through auditing. If this were not the case, and θ0

varied with messages sent by the agents even as the audited information remained

the same, then any side contract that satisfied (IC1) would specify that in each

state of the world agents would send the joint message that resulted in the lowest

θ0 = θ1 + θ2, violating (IC2). We may therefore state the following result

which extend’s Townsend’s (1979) rewrite of the bilateral incentive compatibility

constraints to the multilateral case.

Lemma 2. If a(x) and θ0(x) are feasible then there is a constant p0 and functions

7 That is to say the set {x ∈ X|s1(x) + s2(x) > 0} has zero measure.
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y1(x1), y2(x2) and z(x) such that

θ0(x) = p0 −max(y1(x1), y2(x2))− z(x) (4a)

ai(x) = 1 if



yi(xi) > yj(xj) or

yi(xi) = yj(xj) > 0 and aj(x) = 0 or

z(x) > 0

(4b)

where p0, y1(x1), y2(x2), z(x) ≥ 0 for all x ∈ X. (4c)

The notation may be interpreted as follows. p0 may be interpreted as the total

premium paid by group members to the insurer, with p0 − θ0(x) as the total

claim payment to group members in state x. y1(x1) and y2(x2) are minimum

claim payments payable to the group based on either agent 1’s or agent 2’s losses

respectively, such that if the state is x the total claim payment to the group is

at least max(y1(x1), y2(x2)). z(x) is the additional claim payment payable in

addition to max(y1(x1), y2(x2)) if a second loss is audited.

A sketch of the proof is as follows. First, as is typical in models with deterministic

auditing rules, θ0 must be constant over the region where no audits occur. If not,

the group would have an incentive to side contract so that equilibrium reports

were of the zero audit state of the world with the lowest θ0. Truthtelling would

not be incentive compatible, violating (IC2). We may therefore write θ0(x) for

those x such that a1(x) = a2(x) = 0 as some constant p0.

Second, unaudited states cannot result in a higher claim payment from insurer to

agents than audited states, or the group would have an incentive to report a zero

audit state, violating (IC2). Therefore θ0(x) − p0 must be nonnegative for all x.

Since expected insurer profits must be nonnegative, p0 ≥ 0.

Third, consider some x1, x
′
1, x2, x

′
2 such that in state (x1, x

′
2) only loss 1 is

audited and in state (x′1, x2) only loss 2 is audited. For the group not to have
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the incentive to misreport either (x1, x
′
2) or (x′1, x2) when the true state was

(x1, x2) it must be that θ0(x1, x2) ≤ θ0(x1, x
′
2) and θ0(x1, x2) ≤ θ0(x′1, x2).

When only one agent is audited in state (x1, x2) it must be that θ0(x1, x2) =

min(θ0(x1, x
′
2), θ0(x′1, x2)). For each xi, if there is some xj such that only agent

i is audited, we define yi(xi) := p0 − θ0(x1, x2) and if there is no such xj we

define yi(xi) := 0. When only one agent is audited we may therefore write

θ0(x) = p0 −max(y1(x1), y2(x2)).

Fourth, in any state x where both agents are audited the above inequality need not

bind, and so we have θ0(x) ≤ p0 −max(y1(x1), y2(x2)). Therefore there exists

a z(x) ≥ 0 such that (4a) holds.

2.4 Loss Adjustment Cost

We are now able to state our assumption about the cost of loss adjustment. Define

y(x) := max(y1(x1), y2(x2)). Then:

Assumption 1. The deadweight loss adjustment cost to the insurer of a

feasible mechanism {a, θ} is κ(Ey,Ez) where κ(0, 0) ≥ 0 and D2κ(Y,Z) ≥

D1κ(Y, Z) > 0 for all Y,Z ≥ 0.8

Assumption 1 is in effect an extension of Arrow’s (1963) assumption that the

insurer is willing to offer an insurance policy at a premium which depends

only on the policy’s actuarial value, that is the expected claim payment. In our

environment the expected deadweight cost depends on the auditing structure as

well as the actuarial value. The assumption D2κ ≥ D1κ > 0 captures the notion

that loss adjustment is costly and that it is at least as costly to increase the claim

payment when two audits are necessary as when only one audit is necessary.

Suppose that the mechanism designer wanted to increase the claim payment in

some state x where yi(xi) > yj(xj). yi(xi) could be increased, but this would

necessitate increasing the minimum claim payment for all states x′ in which agent

8 The notation Diκ denotes the partial derivative of κ with respect to the ith argument.
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i’s loss was xi. The designer could instead increase z(x), without the need to

increase claim payments in other states, but this increase would be subject to a

larger deadweight cost than that from increasing y(x) in state x.

Arrow’s (1963) assumption is a special case of assumption 1, where κ(Ey,Ez) =

κ(Ey + Ez). A simple linear example of a loss adjustment function that satisfies

assumption 1 is where the realised cost of loss adjustment in some state x is

κ0 + κ1 × y(x) + κ2 × z(x) for constants κ2 ≥ κ1 > 0 and κ0 ≥ 0.

3 THE BENCHMARK MODEL AND STOP LOSS

CONTRACTS

Under ex ante side contracting we first reduce the multilateral contracting

problem between two agents and an insurer to a bilateral problem between an

insurer and a group representative agent. We parameterise optimal contracts

by λ, the expected profit of the insurer, and show that any optimal mechanism

maximises the expected utility of a group representative agent, subject to our

rewritten incentive compatibility constraints. Denoting the expected profit of the

insurer by π(p0,Ey,Ez) := p0−Ey−Ez−κ(Ey,Ez) and the group consumption

by c0 := w0 − p0 − x0 + max(y1, y2) + z we have the following:

Lemma 3. If a mechanism (a, θ) is optimal under ex ante side contracting then

there exists constant λ and strictly increasing concave function u0 such that θ0 =

p0 −max(y1, y2)− z is a solution to:

max
p0,y1,y2,z

Eu0(c0) subject to π = λ, (3) and (4c) (5)

Following Wilson (1968) we may interpret u0 as a surrogate group utility

function, defined over group consumption c0 = c1 + c2, with corresponding
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belief f(x). The objective function is therefore the expected utility of the group

representative agent, and is an increasing linear function of the both realised

utility of agent 1 and that of agent 2 under a Pareto optimal sharing rule.

Program (5) implicitly specifies ai for each loss i of the state x, but only aggregate

transfers θ0 between insurer and group are specified: the program does not

specify the split of insurance claim payments between agents. The specific

allocation of claim payments does not matter because agents can contract with

each other to undo any allocation of the consumption good determined by the

insurer. Indeed, agents will contract so that net consumption profiles on the

truthful equilibrium path satisfy the Borch (1962) rule.9 Neither does the program

specify the punishments levied on agents out of equilibrium, but without loss of

generality we may assume that when any message is found to be incorrect, the

aggregate net transfer to insurer from agents is p0.

Our reduced problem is mathematically similar to those considered in Townsend

(1979), but with the addition that the state can be partially audited; the insurer

can choose to audit just one loss, and therefore only partially learn the state of the

world, whereas in Townsend’s models the state was one-dimensional and so any

audit yielded the full state.

A mechanism (a, θ) is said to be a Generalised Stop Loss contract if

θ0(x) = p0 −max(0, x1 −D1, x2 −D2, x0 −D12) for almost all x ∈ X (6)

for some D1, D2 ∈ [0, x̄] and D12 ∈ [0, 2x̄]. A Generalised Stop Loss contract

offers full marginal insurance for any one loss above a single loss deductible

of Di, and full marginal insurance for the combined loss above a group loss

deductible of D12. Net consumption of the pair of agents for almost all x ∈ X is:

c0(x) = w0 − p0 −min(x1 + x2, D1 + x2, x1 +D2, D12) (7)

9 The Borch Rule states that u′1(c1(x))/u′2(c2(x)) is constant for almost all x ∈ X . If not, there
would be a side-contract with truthful equilibrium consumption that strictly dominated the original
side-contract.
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Figure 1 illustrates the net consumption under a Generalised Stop Loss contract

for different individual and group deductibles D1, D2 and D12.

We are now in a position to state our main result.

Theorem 1. Any optimal feasible mechanism is a Generalised Stop Loss

contract.

The solution methods we employ to prove Theorem 1 follow Winton (1995)

and Gollier and Schlesinger (1996) in relying only on notions of second order

stochastic dominance. The two key assumptions underlying our result are our loss

adjustment cost assumption and the assumption that losses are affiliated. Without

the affiliation assumption we could not guarantee that indemnity schedules would

be increasing in the incurred loss.

An alternative loss adjustment cost assumption would be that the realised loss

adjustment cost depended only on the number of audits conducted. However, this

extension of Townsend’s (1979) constant fixed audit cost assumption is not easy

to work with in a model with incentive compatibility restrictions (4a) and (3). For

example, Picard (2000) considered optimal contracting under these assumptions

in the bilateral case but could only characterise the optimal indemnity schedule

after having restricted attention to schedules in which the claims payment was

weakly increasing in incurred loss. In our model Theorem 1 holds under the

fixed claim cost assumption if the pdf of losses f is weakly decreasing in both

its arguments, but the optimal contract seems more difficult to characterise under

less restrictive assumptions.

Theorem 1 follows through if agents are unable to sign complete state contingent

contracts on (s,m, θ) but may still commit to a sharing rule, (c1(c0), c2(c0))

as the sharing rule would align the agent’s incentives for sabotage and message

decisions. We will further relax the assumption about the ability of agents to

commit to ex ante side contracts in section 6 and will consider optimal contracts
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when sabotage is not possible, or is separately observable by the insurer, in

section 4.

Theorem 1 also extends to a setting with N agents: the insurer would offer full

marginal insurance for losses above a suite of individual, subgroup and group

deductibles.

We may derive a corollary to our main Theorem by appealing to the loss

adjustment function considered by Arrow (1963). A mechanism (a, θ) is said

to be a Pure Stop Loss contract if

θ0(x) = p0 −max(0, x0 −D12) for almost all x ∈ X (8)

for some D12 ∈ [0, 2x̄]. A Pure Stop Loss contract offers full marginal insurance

for combined losses above the group deductible D12. It is a special case of a

Generalised Stop Loss contract with D1 = D2 = x̄ or D12 < min(D1, D2). Net

consumption of the pair of agents for almost all x ∈ X is:

c0(x) = w0 − p0 −min(x1 + x2, D12) (9)

Corollary 1. For κ(Ey,Ez) = κ(Ey + Ez) any optimal feasible mechanism

under ex ante side contracting is a Pure Stop Loss contract.

That is, when the loss adjustment cost only depends on the actuarial value and

not the audit schedule, the insurer offers the group full marginal insurance for

group losses above some aggregate group deductible. The intuition is as follows.

When κ is additive in its arguments there is no need to ever audit just one

agent as the additional cost of auditing the other agent is zero. Program 5

therefore reduces mathematically to that considered by Arrow (1963) where our

representative group agent with preferences represented by u0 takes the place of

Arrow’s policyholder.
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3.1 A comparison with bilateral insurance

Instead of offering a multilateral contract to both agents, an insurance company

could arrange for a bilateral insurance contract to be signed with each agent. (In

a bilateral mechanism the net transfer from each agent θi to the insurer must

depend only on that agent’s loss xi.) How does our optimal contract differ from

a set of bilateral contracts? Any set of bilateral contracts offering full marginal

insurance to each agent below an agent-specific deductible Di may be written as

a Generalised Stop Loss contract with D1 + D2 = D12. That is, the aggregate

transfer from agents to insurer satisfies θ0(x) = p0 − max(0, x1 − D1) −

max(0, x2−D2) for some deductibles D1, D2 ∈ [0, x̄]. Such a bilateral contract

is weakly dominated by the optimal multilateral contract, with strict dominance

when in an optimal multilateral mechanism, D12 6= D1 +D2.

A suite of bilateral contracts (left panel of Figure 1) is strictly dominated by a

multilateral contract if either the deadweight loss adjustment cost of increasing

transfers in the double audit region is high (right panel of Figure 1) or low (central

panel of Figure 1). In practice, we might expect the latter to be more likely, as the

cost of auditing a second loss from the small community may not be much higher

than the cost of auditing just the first loss.

4 VERIFIABLE SABOTAGE AND SAMPLE-BASED

INDEX INSURANCE

Suppose that during an audit the insurer could separately identify sabotage

decisions s1 and losses x1 for agent 1, and condition transfer function θ on

this information, but such separate identification was not possible for agent 2’s

losses. The indemnity schedule would no longer need to be restricted to feature

no marginal overinsurance for x1; the insurer could ensure that s1 was always

zero by setting θ0 to be p0 whenever s1 was observed to be nonzero. However by
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the following lemma, the indemnity would still need to be restricted to feature no

marginal overinsurance for loss x2.

x0 + θ0(x) is weakly increasing in x2 (10)

Lemma 4. Any direct feasible mechanism (a, θ) under ex ante side contracting

where the insurer can separately identify sabotage decisions and losses for agent

1, but not for agent 2, is weakly dominated by a direct feasible mechanism (a′, θ′)

that satisfies condition (10)

Maximisation Program 5 would become:

max
p0,y1,y2,z

Eu0(c0) subject to π = λ, (4c) and (10) (11)

and the following Theorem characterises the form of optimal mechanisms:

Theorem 2. In any optimal feasible mechanism under ex ante side contracting

with verifiable sabotage there exist constants D1, D2 ∈ [0, x̄] and D12 ∈ [0, 2x̄]

such that for almost all x:

1. θ0(x) = p0 for all x1 + x2 ≤ D12 and xi ≤ Di, i = 1, 2;

2. x1 − y1(x1) is nonincreasing in x1 for all x1 > D1;

3. y2(x2) = max(x2 −D2, 0);

4. z(x) = max [0, x1 + x2 −max(y1(x1), y2(x2))−D12];

The optimal contract therefore retains some features from the Generalised Stop

Loss contract: the equality of consumption on the double audit region; the full

marginal indemnification for agent 2’s losses above a single loss deductible of

D2; and the shape of the zero audit region. However, marginal overinsurance

is offered for the first loss, above a first loss deductible of D1. This marginal

overinsurance is for two reasons. First, losses are affiliated and so an increase in

loss x1 also implies that loss x2 is likely to be greater. As an extreme example,
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suppose that losses are close to being perfectly correlated and D2κ(Y,Z) >

D1κ(Y,Z) for all Y,Z > 0. Then the double audit region will be the null set

and on the single audit region for agent 1, ∂y1(x1)/∂x1 ≈ 2 > 1. The second

reason for marginal overinsurance is that, since y2 is increasing, as y1 increases

the set {x2|y1 ≥ y2(x2)} expands in the direction of states with larger losses.

This provides further impetus for an additional increase in y1.

In the case in which loss affiliation is strong this optimal contract may be likened

to model plot area yield index agricultural insurance. The insurer would only ever

conduct audits on model plots, and the aggregate transfer to agents would be a

multiple of the average loss incurred on local model plots above the single loss

deductible. The insurance claim payment is therefore a function of a statistical

sample of local plots.

The optimal contract of Theorem 2 would only be suitable for an insurance

company to offer if it could guarantee that plots could not be sabotaged without

the knowledge of the insurer. If sabotage were possible, in some states of the

world agents would want to create further damage, insofar as the insurer could

not differentiate between the initial loss and the extra damage.

5 INDICES AND STOP LOSS GAP INSURANCE

Suppose now that there is a index v ∈ V = [0, v̄] which is jointly affiliated with

the losses and costless for the insurer and agents to observe. A state of the world

is now a triplet ω = (x1, x2, v) ∈ Ω = X × V with probability density function

f(ω) and the joint affiliation assumption may be written as:

f(ω)f(ω′) ≤ f(ω ∨ ω′)f(ω ∧ ω′) for all ω, ω′ ∈ Ω (12)

A direct mechanism will be a pair (a, θ) as before, but where the audit rule and

claims transfer function can also depend on the index.
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We could again reduce attention to mechanisms which satisfy the no marginal

overinsurance of incurred losses condition (3) and the following revised equations

(4a) and (4c):

θ0(ω) = p0 − I(v)−max(y1(x1, v), y2(x2, v))− z(x, v) (13a)

p0, I(v), y1(x1, v), y2(x2, v), z(x, v) ≥ 0 for all ω ∈ Ω (13b)

A natural extension to assumption 1 would be that the deadweight loss adjustment

cost to the insurer would be denoted by κ(EI,Ey,Ez) where κ(0, 0, 0) ≥ 0 and

Diκ(I, Y, Z) is weakly increasing in i = 1, 2, 3 for all I, Y, Z ≥ 0.

Doherty and Richter (2002) considered a similar model when there was only one

loss and the friction was ex ante moral hazard, rather than costly loss adjustment.

They considered insurance products which offered a claim payout that was a

linear function of the index plus a linear function of the gap, which they defined

to be the incurred loss minus the indexed payout. The optimal contracts in our

setting will be the multidimensional extension of Doherty and Richter’s (2002)

index plus gap insurance.

Following the terminology of Doherty and Richter (2002) a mechanism (a, θ) is

said to offer Index Plus Generalised Stop Loss Gap insurance if:

θ0(ω) = p0−max(I(v), x1−D1, x2−D2, x0−D12) for almost all ω ∈ Ω (14)

for some I(v) : V → [0,∞), D1, D2 ∈ [0, x̄] and D12 ∈ [0, 2x̄]. Such a

composite contract offers an indexed payout of I(v) but if individual or joint

losses are large enough there will be an indemnity based top-up of max(0, x1 −

I(v) −D1, x2 − I(v) −D2, x0 − I(v) −D12). Net consumption of the pair of

agents for almost all ω ∈ Ω is:

c0(ω) = w0 − p0 −min(x1 + x2 − I(v), D1 + x2, x1 +D2, D12) (15)
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Theorem 3. Any optimal feasible mechanism under ex ante side contracting

with a costlessly observable index offers Index Plus Generalised Stop Loss Gap

insurance. Any optimal index claim function is weakly increasing in the index

realisation.

The general form of the optimal contract optimal contract in this case is an

extension to the Generalised Stop Loss contract of section 3, but where indemnity

payments are based on total audited losses net of the index payment I(v).

A mechanism (a, θ) is said to offer Index Plus Pure Stop Loss Gap insurance if:

θ0(ω) = p0 −max(I(v), x0 −D12) for almost all ω ∈ Ω (16)

Corollary 2. For κ(EI,Ey,Ez) = κ(EI,Ey + Ez) any optimal feasible

mechanism under ex ante side contracting with a costlessly observable index

offers Index Plus Pure Stop Loss Gap insurance

That is to say, in the optimal contract the group receives an indexed payment I(v)

which depends only on the realised index and indemnity based payouts provide a

floor of D12 on aggregate net loss x0 − I(v).

6 CROWDING IN

Although there is ample evidence that the poor find affordable ways to share risk

within close knit groups, such as households, extended families or villages, such

pooling is rarely observed to be Pareto optimal.10 A side contract where agents

can only commit to the transfer rule after the state of the world x is realised will

10 There is ample evidence that mutual insurance within close knit groups, such as households, extended
families or villages departs from first best (e.g. Townsend 1994, Udry 1994, Dercon 2002, Fafchamps
and Lund 2003). Informal punishments such as exclusion from nonmarket insurance, social sanctions
or physical violence may be able to induce small, but not large, insurance transfers (Coate and
Ravallion 1993). Empirical investigations such as Ligon, Thomas and Worrall (2002) provide
evidence for the existence of binding enforcement constraints in poor communities, causing mutual
insurance arrangements to depart from first best in the direction of Coate and Ravallion (1993).

III·26 Daniel Clarke



Chapter III: Reinsuring the Poor: Group Microinsurance Design and Costly State
Verification

be called an interim side contract Sx = ({s,m, τ}i=1,2) where s ∈ X , mi ∈Mi

and τi ∈ R. Abusing notation, a collection of interim side contracts {Sx}x∈X

will be denoted S. In the absence of incentives from the insurer, interim side

contracting does not allow losses to be pooled between group members; by the

interim stage the loss uncertainty has already been resolved and a lucky agent has

no incentive to agree to make transfers to an unlucky agent. However, agents will

still be able to collude against the insurer, by sending messages that maximise the

total consumption and undoing any contractual split of consumption dictated by

the split of θi.

Following Rai and Sjostrom (2004) we will show that any outcome that can

be implemented under ex-ante side contracting can also be implemented under

interim side contracting, so long as the insurer has the ability to inflict a large

enough non-pecuniary punishment q̄ on each agent. Let the non-pecuniary

punishment for agent i be qi : M1 × M2 × X → [0, q̄]. This could be the

denial of future financial services or the cost of being ‘hassled’ by the insurer.

Each agent i is assumed to have preferences defined over net consumption ci and

qi with ui(ci, qi) = ui(ci − qi). A mechanism under interim side contracting is

taken to be a specification of (M,a, θ, q).

For a given mechanism G, an interim side contract S will be called incentive

compatible if the agents could not sign a side contract that would be better for

both agents in any state of the world. Individual rationality requires each side

contract Sx to be accepted by both agents for each state x ∈ X . If the agents

do not sign any side contract at the interim stage then they go on to play a Nash

equilibrium of (G, x). Let ui(G, x) denote agent i’s Nash equilibrium payoff.11

ui(G, x) acts as the reservation utility for interim side contracting in state x, and

so we may write the individual rationality and incentive compatibility constraints

as:
11 If there were multiple Nash equilibria of (G, x) we would assume that agents make some selection

from the set of Pareto optimal Nash equilibria. However, the mechanism we construct has a unique
Nash equilibrium.

III·27 Daniel Clarke



Chapter III: Reinsuring the Poor: Group Microinsurance Design and Costly State
Verification

(IR2) (For individual rationality under interim side contracting)

E[θ0] − κ ≥ 0, E[ui(ci)] ≥ ūi and ui(ci(x)) ≥ ui(G, x) for i = 1, 2 and

x ∈ X .

(IC3) (For incentive compatibility of an interim side contract)

There is no other individually rational side contract which gives strictly

higher utilities to both agents in any state of the world.

A mechanism G will be called feasible under interim side contracting if there

exists some ex ante side contract S which, together with G, satisfies (IR2), (IC2)

and (IC3).

Assuming that the maximum punishment q̄ is at least as large as the largest side

transfer of the outcome we intent to implement, we may show the following:

Theorem 4. Any outcome (π∗, c∗i , c
∗
2) from an optimal feasible mechanism

under ex ante side contracting, and associated feasible ex ante side contract,

is implementable by a feasible mechanism and interim side contract. Moreover,

it is uniquely ε-implementable in the following sense: for any ε > 0 there exists a

mechanism G(ε) such that for any individually rational and incentive compatible

side contract S, |c∗1(x)− c1(x)|, |c∗2(x)− c1(x)| ≤ ε.

This result is equivalent to Proposition 3 of Rai and Sjostrom (2004) and relies

on both the ability of the insurer to punish and that of agents to cross report. We

show that Generalised Stop Loss contracts are still attractive even if agents cannot

commit ex ante to pool uncertainty, so long as agents have a loss adjustment cost

advantage and the insurer has sufficient ability to punish agents.

7 CONCLUSION

How is microinsurance, that is insurance for low-income people, economically

different to conventional personal lines insurance? The key assumption modeled
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in this paper is that for microinsurance the cost of ex-post claims processing,

known as loss adjustment, is lower for local nonmarket institutions relative

to external formal sector insurers. Although multilateral credit contracts are

now common, multilateral insurance contracts, where the claim payment to one

policyholder explicitly depends on the losses incurred by other policyholders, are

rarely observed in practice, with the exception of area yield agricultural insurance

(Mahul and Stutley 2010). A normative interpretation of the above models

provides support for particular multilateral insurance contract forms between

premium-charging insurance companies or publicly funded social insurance

schemes and poor individuals, namely the Stop Loss, Sample-Based Index and

Index Plus Gap contract forms.

Development economists have a healthy suspicion of normative microeconomic

theory brought about by the observation that the poor are usually more

enterprising than the researcher. However, this suspicion is less well-founded

in the context of formal and semiformal finance for the poor. The potential

welfare gains from successful financial innovation are widely considered to be

large (Banerjee 2002, Collins et al. 2009, Karlan and Morduch 2009). However,

experimenting with financial innovations is costly and outcomes are difficult

to evaluate, particularly for insurance contracts where payouts are typically

expected to be made in only one year out of five. Financial innovations

in developed markets have often been theory-led and the recent advances in

positive microfinance theory leave economists well placed to make suggestions

for improvements.

In their chapter on microfinance in the Handbook of Development Economics,

Karlan and Morduch (2009) write: “[Micro-insurance] holds promise, but the

field is young and no approaches have emerged so far that offer break-throughs

akin to the original group-lending innovations that ignited the global explosion of

microcredit”. We wonder whether the contracts outlined in this paper might be

useful here and there for formal contracting with the poor, particularly in the life,

longevity and crop insurance classes of business.
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APPENDIX

Proof of Proposition 1. Consider the following direct mechanism. Let each agent report
the total loss s + x, so M1 = M2 = X . Define θ∗i (x) = wi − xi − ci(x) where
(c1(x), c2(x)) is the desired consumption schedule. If both agents report the same total
loss x then neither agent is audited (a1(x, x) = a2(x, x) = 0) and transfers are such each
agent’s consumption follows the desired consumption schedule (θi(x, x, x′) = θ∗i (x)).

If agents report different states, then both agents are audited (a1(x′, x′′) = a2(x′, x′′) =
1 where x′ 6= x′′) and the insurer learns which agents have lied. If both agents have
lied (x′ 6= x + s and x′′ 6= x + s) then set θi(x′, x′′, x + s) = θ∗i (x + s) + ε for
some ε > 0. If agent 1 tells the truth and agent 2 doesn’t then set θ1(x, x′′, x + s) =
min(θ∗1(x′′), θ∗1(x + s)) − ε and θ2(x + s, x′′, x + s) = θ∗2(x + s) + ε. If agent 2 tells
the truth and agent 1 doesn’t then set θ2(x′, x+ s, x+ s) = min(θ∗2(x′), θ∗2(x+ s))− ε
and θ1(x′, x+ s, x+ s) = θ∗1(x+ s) + ε.

Under this mechanism misreporting the total loss (mi 6= x + s) is strictly dominated by
truthtelling (mi = x+ s) for both agents. If ci(x) is nonincreasing in xi for i = 1, 2 then
there is a Nash equilibrium where both agents choose si = 0 and then report truthfully,
with no auditing on the equilibrium path. However, there are equilibria with sabotage by
agent i in regions where ci(x) is constant over xi. If ci(x) is strictly decreasing in xi for
i = 1, 2 then the no sabotage, truthtelling equilibrium is the unique equilibrium.

Proof of Lemma 1. Define σ : X → X by σ(x) = (x1 + s1(x), x2 + s2(x)) ∀x ∈ X ,
a′ = a ◦ (σ, σ), θ′ = θ ◦ (σ, σ, (σ, Id)), where θ is now a function of m1,m2, (x, s1).

Now for any feasible ex ante side contract S = (s, τ) we define S′ = (s′, τ) where
s′(x) = (0, 0) for all x ∈ X . Direct mechanism (a′, θ′) inherits feasibility from (a, θ)
and under side contract S′ both agents receive the same expected utility as under the
original mechanism and S, but the insurer receives weakly higher expected profits as
net transfers to agents are lower in states where s(x) 6= (0, 0) under the original side
contract.

Proof of Lemma 2. For feasible (a, θ0) define

p0 := max
x∈X

θ0(x) (A-1a)

yi(xi) := min
xj∈[0,x̄]

(p0 − θ0(x)) , (i, j) ∈ {(1, 2), (2, 1)} (A-1b)

z(x) := p0 −max(y1(x1), y2(x2))− θ0(x) (A-1c)

(A-1c) ensures that definitions (A-1a)-(A-1c) satisfy (4a).

To demonstrate that they satisfy (??), first suppose p0 < 0. Then θ0(x) < 0 for all
x ∈ X , violating (IR1). So p0 ≥ 0. Since maxx∈X θ0(x) − θ0(x) ≥ 0, yi(xi) ≥ 0 for
i = 1, 2 and x ∈ X . Finally, substituting (A-1b) in to (A-1c) gives

z(x) = −max
(

min
x′1∈[0,x̄]

(−θ0(x′1, x2)), min
x′2∈[0,x̄]

(−θ0(x1, x
′
2))
)
− θ0(x)

= min
(

max
x′1∈[0,x̄]

(θ0(x′1, x2)), max
x′2∈[0,x̄]

(θ0(x1, x
′
2))
)
− θ0(x)

≥ 0

where the final inequality arises from maxx′1∈[0,x̄](θ0(x′1, x2)) ≥ θ0(x) and
maxx′2∈[0,x̄](θ0(x1, x

′
2)) ≥ θ0(x). Definitions (A-1a)-(A-1c) therefore satisfy (4c).
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Now we show by contradiction that feasibility implies that 4b must hold for (A-1a)-
(A-1c). First suppose that there is some y1(x1) > y2(x2) such that a1(x1, x2) = 0.
y1(x1) ≤ p0−θ0(x1, x2) from (A-1b), with strict inequality if there was some x′2 ∈ [0, x̄]
such that θ0(x1, x

′
2) > θ0(x1, x2). For (IC2) to hold θ0(x′1, x2) ≤ θ0(x1, x2) for all x′1 ∈

[0, x̄] otherwise it would be optimal for agents to misreport state (x′1, x2) as (x1, x2).
Now, from (A-1b), y2(x2) := minx′1∈[0,x̄](p0−θ0(x′1, x2)) = p0−θ0(x1, x2). However,
combined with y1(x1) ≤ p0−θ0(x1, x2) it must be that y1(x1) ≤ y2(x2). Contradiction.
The proof is similar if there is some y1(x1) > y2(x2) such that a1(x1, x2) = 0.

Second, suppose that there is some x ∈ X such that y1(x1) = y2(x2) > 0 but a1(x) =
a2(x) = 0. For (IC2) to hold θ0(x′) ≤ θ0(x) for all x′ ∈ X otherwise it would be optimal
for agents to misreport state x′ as x. Therefore p0 = θ0(x) and y1(x1) = y2(x2) = 0
from (A-1a) and (A-1b). Contradiction.

Third, suppose that there is some x ∈ X such that z(x) > 0 but a1(x) = 0. For (IC2) to
hold θ0(x′1, x2) ≤ θ0(x1, x2) for all x′1 ∈ [0, x̄] otherwise it would be optimal for agents
to misreport state (x′1, x2) as (x1, x2). Now, from (A-1b), y2(x2) := minx′1∈[0,x̄](p0 −
θ0(x′1, x2)) = p0 − θ0(x1, x2) and so z(x) = 0 from (A-1c). Contradiction. The proof
is similar if there is some x ∈ X such that z(x) > 0 but a2(x) = 0.

θ0(x′) ≤ θ0(x) for all x′ ∈ X otherwise it would be optimal for agents to misreport
state x′ as x. Therefore p0 = θ0(x) and y1(x1) = y2(x2) = 0 from (A-1a) and (A-1b).
Contradiction.

Proof of Lemma 3. We may parameterise any constrained Pareto optimal mechanism
and side contract by the expected utility of agent 2, µ, and the expected profit of the
insurer, λ:

max
p0,y1,y2,z,c1,c2

Eu1(c1(x))

subject to
Eu2(c2(x)) ≥ µ
π(p0,Ey(x),Ez(x)) ≥ λ
(IC1), (IC2), y = max(y1, y2), θ0 = p0 − y − z

and c1 + c2 = w0 − p0 − x0 + y + z

We may replace (IC1) and (IC2) with (3) and (4c). Both of these depend on aggregate
consumption, but not the split of consumption between agents.

Denoting the Lagrangian multiplier on the budget constraint as f(x) × u′0(c0(x)) for
some function u′0, and that on the expected utility constraint for agent 2 as ν, the first
order constraints for c1 and c2 yield:

u′1(c∗1(x)) = νu′2(c∗0(x)− c∗1(x)) = u′0(c∗0(x)) ∀x ∈ X

We may integrate u′0 to construct a function u0 such that u0(c∗0(x)) = u1(c∗1(x)) for all
x. u0 is increasing and strictly concave from the strict increasing concavity of u1 and u2.
The required result follows by substituting the expression for u0(c0(x)) into the objective
function.

Proof of Theorem 1. Throughout the proof we fix p0, Ey and Ez, and therefore the
insurer’s expected profit, and appeal to notions of second order stochastic dominance
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of aggregate consumption schedule c0.12 Suppose {p0, y1, y2, z} solved Program 5 but
was not a Generalised Stop Loss contract.

First we show that:

z(x) = max [0, x1 + x2 −max(y1(x1), y2(x2))−D12] (A-2)

for some D12, offering a floor on consumption. Fix y1 and y2 and suppose that z does
not satisfy equation (A-2). Define z′ as in equation (A-2) for some D′12 chosen so that
Ez = Ez′. Abusing notation, define random variables c0 = w0 − p0 − x0 + y + z
and c′0 = w0 − p0 − x0 + y + z′ with cdfs Gc0 and Gc′0

respectively. By Gollier and
Schlesinger (1996), c0 is a mean preserving spread of c′0 and so Gc′0

strictly SSD Gc0 . c′0
will therefore be strictly preferred by the representative group agent, whose preferences
are strictly risk averse, and therefore by both agents.

To characterise optimal y1, y2 we appeal to the following Lemma to reduce attention to
net consumption before the addition of z, c−z

0 = w0 − p0 − x0 + max(y1, y2):

Lemma A1. If c′0 SSD c0 and D′12, D12 are set so that E max(0, D′12 − c′0) =
E max(0, D12 − c0) then max(c′0, D

′
12) SSD max(c0, D12). The dominance is strict

iff the cdfs of max(c′0, D
′
12) and max(c0, D12) are not identical.

Proof. Gc′0
SSD Gc0 iff

∫ t

−∞[Gc0(c) − Gc′0
(c)]dc ≥ 0 ∀t. We are also given that

D′12, D12 are set so that ∫ D′12

−∞
Gc′0

(c)dc =
∫ D12

−∞
Gc0(c)dc (A-3)

Now:∫ t

−∞
[Gmax(c0,D12)(c)−Gmax(c′0,D′12)(c)]dc =

∫ t

D12

Gc0(c)dc−
∫ t

D′12

Gc′0
(c)dc

=
∫ t

−∞
[Gc0(c)−Gc′0

(c)]dc ≥ 0 ∀t

Where the second equality is from equation (A-3)

Consider the following definitions:

y′(x) := max(yj(xj), xi −Di(xj))
y′′(x) := max(yj(xj), y′′i (xi)) where y′′i (xi) = max(xi −Di, 0)

where Di is chosen so that
∫

X
f(x)[y′′(x) − y(x)]dx = 0 and Di(xj) is chosen so

that
∫ x̄

0
f(x)[y′(x) − y(x)]dxi = 0 for each xj such that E[y(x)|xj ] > 0. Due to our

assumption (1) that losses are affiliated,Di(xj) must be weakly increasing in xj for those
xj such that E[y(x)|xj ] > 0. We may therefore define Di(xj) for those xj for which
E[y(x)|xj ] = 0 to be no greater than Di(x′j) for all x′j > xj and no less than Di(x′′j ) for
all x′j < xj .

12 Following Rothschild and Stiglitz (1970), second order stochastic dominance is defined as follows:

H SSD G iff
∫ t

−∞
[G(c)−H(c)]dc ≥ 0 ∀t

with strict SSD if there is a t for which the inequality is strict.
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Let c′0(x) := w0 − p0 − x0 + y′(x) and c′′0(x) := w0 − p0 − x0 + y′′(x). We will
show that Gc′′0

SSD Gc′0
strict SSD Gc−z

0
and that the new contract {p0, y

′′
i , yj , z} is

feasible and yields the same expected profit for the insurer as the original contract. This
will provide us with our contradiction.

{p0, y
′′
i , yj , z} is feasible and yields the same expected profit for the insurer by

construction so all we need prove are the SSD relationships. That Gc′0
strict SSD Gc−z

0

is straightforward: we perform a series of mean preserving contractions of consumption,
one for each xj , by moving claims mass to equalise net consumption in the highest net
loss states. The strictness arises from the observation that if Gc′0

equals Gc−z
0

then the
original contract must have been a Generalised Stop Loss contract.

Finally we show that Gc′′0
SSD Gc′0

. Since Di(xj) is weakly decreasing in xj there
is some x∗j such that Di(xj) ≤ Di for all xj ≤ x∗j and Di(xj) ≥ Di for all xj ≥
x∗j . To transform c′0(x) to c′′0(x) we reduce claim payments for xj ≤ x∗j and increase
claim payments for xj ≥ x∗j . The minimum consumption in the region xj ≤ x∗j after
reducing claim payments is w0 − p0 −min(Di + x∗j , x̄ + x∗j − yj(xj)). Moreover, the
maximum consumption in the region xj ≥ x∗j after reducing claim payments is also equal
to w0 − p0 −min(Di + x∗j , x̄ + x∗j − yj(xj)). We have moved claims mass from high
net consumption states to low net consumption states and therefore Gc′′0

SSD Gc′0
.

Proof of Corollary 1. When κ is additive in its arguments, auditing two agents and
making a claim payment costs the same as auditing only one and making the same claim
payment and so without loss of generality we may assume that y1(x1) = y2(x2) = 0 for
all x ∈ X and instead write the optimal net transfer in terms of p0 and z(x) = p0−θ0(x)
only. Theorem 1 holds, implying the required result.

Proof of Lemma 4. Define σ : X → X by σ(x) = (x1, x2 + s2(x)) ∀x ∈ X , a′ =
a ◦ (σ, σ), θ′ = θ ◦ (σ, σ, σ).

Now for any feasible ex ante side contract S = (s, τ) we define S′ = (s′, τ) where
s′(x) = (s1(x), 0) for all x ∈ X . Direct mechanism (a′, θ′) inherits feasibility from
(a, θ) and under side contract S′ both agents receive the same expected utility as under
the original mechanism and S, but the insurer receives weakly higher expected profits
as net transfers to agents are lower in states where s2(x) 6= 0 under the original side
contract.

Proof of Theorem 2. Parts 3. and 4. can be shown using the same logic as in the proof
of Theorem 1. Appealing to Lemma A1 we may restrict attention to consumption before
the addition of z, c−z

0 . Define y(x) = max(y1(x1), y2(x2)) for some optimal y1, y2.

First we show that the region y1(x1) = 0 is a lower interval of x1, and therefore that Part
1. of the Theorem holds. For each x2 define Fy(y|x2) as the cdf of the random variable
y(x) conditional on the second loss. Consider the following definitions:

y′(x) := sup
y′
{Fy(y′|x2) ≤ Fx1(x1|x2)} for all x ∈ X

y′′(x) := max(y′′1 (x1), y2(x2))

where y′′1 (x1) is the y′′1 that solves
∫ x̄

0
f(x)y′(x)dx2 =

∫ x̄

0
f(x) max(y′′1 , y2(x2))dx2 or

zero if there is no solution, for each x1. Operation y → y′ rearranges the claims mass to
states with high x1, keeping the conditional cdf constant for each x2. Operation y′ → y′′

shifts claims mass towards states with higher x2 whilst making y incentive compatible,
keeping E[y|x1] constant.
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By construction y′′(x) satisfies incentive compatibility and Gw0−p0−x0+y′′ SSD
Gw0−p0−x0+y′ SSD Gw0−p0−x0+y with strict dominance if the original y was not
weakly increasing in both arguments for almost all x.

We will only provide a sketch proof to part 2. Suppose that there are some intervals β =
[β1, β2] and β′ = [β′1, β

′
2] such that β′2 > β′1 > β2 > β1 and for all x1 ∈ β, x′1 ∈ β′ then

y1(x′1) ≥ y1(x1) > 0 but x′1 − y1(x′1) > x1 − y1(x1). By affiliation of losses and part
3. of this Theorem, the conditional cdf of consumption in region {x|x1 ∈ β, y1(x1) >
y2(x2)} strictly SSD that of consumption in region {x|x1 ∈ β′, y1(x1) > y2(x2)} and
so we can strictly increase expected utility of the agents by decreasing y1(x1) for all
x1 ∈ β by some ε > 0 and increasing y1(x1) for all x1 ∈ β′ by some ε′ > 0 where ε, ε′

are chosen so that Ey remains constant.

Proof of Theorem 3. Proof of Theorem 3 closely follows that of Theorem 1 and so we
only provide a sketch.

Conditional on function I(v) and keeping Ey1,Ey2,Ez constant the insurer must choose
optimal y1, y2, z. If the insurer audits only agent i it learns the net loss xi − I(v) but
does not learn xj , and if the insurer audits both agents it learns the complete net loss
x1 + x2 − I(v). Following the same logic in the proof of Theorem 1 the double audit
transfer will act to provide a floor on the net loss x1 + x2 − I(v) and the single audit
transfers will provide a floor on xi − I(v).

All that remains to be shown is that I(v) is increasing in v. We may extend Lemma A1
to show that, conditional on y1, y2, z being of the form above, if Gw0−p0−x0+I′(v) SSD
Gw0−p0−x0+I(v) then no mechanism with indexed payout function I can be optimal.
Since v is jointly affiliated with x, any optimal indemnity schedule must be increasing
in v for a.e. v or we can rearrange I to give a second order stochastically dominant
consumption schedule for agents.

Proof of Corollary 2. Proof follows that of Corollary 1.

Proof of Theorem 4. Suppose the optimal direct mechanism is (a∗, θ∗) and associated
ex ante side contract is (s∗, τ∗). There is no overinsurance (Lemma 1 holds) and so
s∗(x) = 0 for all x.

Consider the following mechanism (M,a, θ, q) and a collection of feasible interim side
contracts (s,m, τ). Under the mechanism each agent i must send a message (xi, ri)
where xi is i’s report of the state of the world, ri = 1 is a report that the other agent
j has agreed to make the transfer τ∗j (x) to agent i, and ri = 0 is a report that agent j
hasn’t. The message space, audit rule, net transfer to insurer and punishment function
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are defined as follows for some small positive ε > 0:

Mi := X × {0, 1}

ai((x1, r1), (x2, r2)) :=

{
a∗(xi) if x1 = x2 and r1 = r2 = 1
(1, 1) otherwise

x̃i :=


(xi

1, x
i
2) if a1 × (xi

1 − x1) = 0, a2 × (xi
2 − x2) = 0

(xi
1, x2) if a1 × (xi

1 − x1) = 0, a2 × (xi
2 − x2) 6= 0

(x1, x
i
2) if a1 × (xi

1 − x1) 6= 0, a2 × (xi
2 − x2) = 0

(x1, x2) if a1 × (xi
1 − x1) 6= 0, a2 × (xi

2 − x2) 6= 0

θi((x1, r1), (x2, r2), x) :=

{
θ∗i (x̃i) if ri = 1
θ∗i (x̃i) + min(0, τ∗i (x̃i)) if ri = 0

qi((x1, r1), (x2, r2), x) :=


q̄ if x̃i 6= xi

max(0, τ∗i (x̃i)) + ε if x̃i = xi and rj × ri = 0
0 if x̃i = xi and rj = ri = 1

So we define x̃i as the state of the world reported by agent i, xi, corrected for any
information discovered through auditing.

For a particular state x, consider the reservation utility of agent i. No matter what the
message and transfer of agent j, agent i can receive utility of ui(c∗i (x) − ε), where
c∗i (x) = wi−xi−θ∗i (x)−τ∗i (x). If τ∗i (x) > 0 then agent i can send messagemi = (x, 1)
to the insurer and make zero transfer to agent j. Agent i would transfer θ∗i (x) to the
insurer and receive a maximum punishment of τ∗i (x) + ε. If τ∗i (x) ≤ 0 then agent i
can send message mi = (x, 0) to the insurer and make zero transfer to agent j. Agent i
would transfer θ∗i (x) + τ∗i (x) to the insurer and receive a maximum punishment of ε. In
either case the utility of the agent is at least ui(c∗i (x)− ε).

Any interim side contract satisfying (IR2) must yield utility for each agent i of at least
ui(c∗i (x) − ε). No matter what the joint message and transfer of agents in state x, the
total consumption, net of punishments, cannot exceed c∗1(x) + c∗2(x). To achieve this
net consumption both agents must report r1 = r2 = 1 and x̃1 = x̃2 = x. Any interim
side contract satisfying (IC3) must induce zero punishment and, given that utility must
be ui(c∗i (x)− ε), consumption must be at least c∗i (x)− ε.
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