

Does It Pour When it Rains? Capital Flows and Economic Growth in Developing Countries

J-L. Combes, CERDI, University of Auvergne

R. Ouedraogo, CERDI, University of Auvergne **T. Kinda**, IMF, CERDI

P. Plane, CERDI-CNRS, University of Auvergne

June 2016

Financial support from the DFID-ESRC Growth Research Programme, under Grant No. ES/L012022/1 is gratefully acknowledged

Introduction

Neoclassical prediction. Transfers are expected to go from rich countries to DCs where investments are seen as more profitable.

But tangible reality conflicts with this view: important capital outflows observed from poor to rich countries (Lucas paradox).

Most appealing reasons and unanswered questions:

• Returns in LDCs are lower than expected when adjusted for risks. The Stiglitz Weiss (1981)'s model has brought the microeconomic foundations by considering informational issues.

Introduction

• Allocation puzzle: external capital does not necessarily flow to the most growing countries (Cf., Gourinchas and Jeanne, 2007, 2013).

Potential ambiguity with respect to the positive impact of external flows on economic growth: These resources can substitute to domestic financing for the most profitable projects, leaving unfunded projects of lower quality (crowding out).

Introduction

Objective of the paper: We revisit the relationship between capital inflows and GDP growth.

Several **hypotheses** are explored and tested:

- Net capital inflows matter for GDP growth as well as their composition and possibly their fluctuations over time.
- Beyond the direct positive impact of capital inflows, we also have to account for **indirect effects through the REER** (real exchange rate.
- Different sources of **heterogeneity across the sample** in relation with : the level of development (LICs, MICs), the exchange rate regime.

The paper is organized as follows.

Section 1 Briefly reviews the existing literature about capital inflows

Section 2 Descriptive statistics and the econometric strategy for estimation.

Section 3 Main econometric results abed their interpretation

Section 4 Concluding remarks.

Unilateral private transfers. Second largest type of financial flows to DCs after FDI.

- Beyond the *brain drain*, migration can be profitable for the country of origin;
- The domestic opportunity cost of migrants working abroad is generally low;
- Increase the permanent income of beneficiary households, and sometimes stimulate *building booms*.

Official Development Assistance.

- Burnside and Dollar (1997, 2000, 2002). Aid effectiveness is conditional on the orientation of resources to most efficient countries.
- Rajan and Subramanian (2008). No evidence found to support a positive and robust impact
- A positive impact. Guillaumont, McGillivray and Wagner (2015), Guillaumont and Kpodar (2015). Arndt, Jones and Tarp (2010, 2015) broaden the analysis to other dimensions of the social wellbeing.

1- Capital inflows and their components *Direct implications on economic growth*

Foreign Direct investments.

- The robustness debated. The outcome greatly depends on the nature of FDI (Privatization).
- FDI-PPP: the social benefit of FDI may require a substantial time lag before the supply side effects fully occur (infrastructure, mining).
- Raw materials may hamper the manufacturing diversification (resource curse, Dutch disease)

1- Capital inflows and their components.. *Direct implications on economic growth*

Short term capital inflows

- In the late twentieth century some IMF experts have considered that an open capital account could be a signal and an incentive to improve market discipline with promising expectations (stability, additional resources).
- Stiglitz (2000). Capital account liberalization stimulates economic fluctuations when associated flows do not cause them.

FROM1- Capital inflows and their components..Indirect implications through the real exchange rate

- Net capital inflows are seen as one of the main determinants increasing the price of non-tradables. The REER is affected differently according to the type of inflows.
- Remittances may smooth consumption. The Risk for a REER appreciation will depend on what is done with the external resources: strong if resources are channeled to real estate, but negligible if spent on imported goods.
- When the recipient of ODA suffers from supply constraints, capital inflows to consumption put more pressure on the price of domestic goods than those channeled to investments (imported goods).

- FDIs may have a positive impact on REER through transfers of technology, managerial know-how and other intangible assets.
 However, FDIs may consist of "pure" transfers of domestic assets.
 Revenues resulting from a public enterprise selling can be channeled to permanent expenditures, increasing the price of non-tradables.
- The role of *short-term capital* transactions remains debated. They may be stationary variables if they are temporary. But they may have a stochastic trend, be part of a long-term cycle with a lasting influence on the REER.

- Equations (REER, GDP growth) are <u>separately</u> estimated in a panel specification:
- We use a **dynamic specification** given the potential inertia of both REER and GDP Growth rates
- The Blundell and Bond (1998)'system-GMM estimator for dynamic panel is implemented:
- The system-GMM estimator helps reducing the endogeneity issues (measurement errors, reverse causality, omission of pertinent variables)

2- Empirical methodology and net capital inflow statistics

- The validity of the instruments is tested by the Sargan-Hansen over-identification test and by the second order serial correlation test AR (2)
- We have taken care of the problem of instrument proliferation, the matrix of instruments is collapsed (Roodman 2009).
- An external instrument capturing economic growth in developed countries has been added: we have generated an average donor growth weighted by the amount of aid that a country receives from those particular donors (Tavares, 2003).

2- Empirical methodology and net capital inflow statistics

- $REER_{i,t} = \propto +\delta REER_{i,t-1} + \sum_{m=1}^{m=5} \beta_m K flows_{i,t,m} + \theta X'_{i,t} + v_i + \varphi_t + \varepsilon_{i,t}$
- **GDP Growth**_{*i*,*t*} = $\gamma + \pi GDP Growth_{i,t-1} + \sum_{m=1}^{m=5} \rho_m K flows_{i,t,m} + \psi Y'_{i,t} + v_i + \varphi_t + \varepsilon_{i,t}$
- m = FDI, aid, Remittances, portfolio, other net inflows
- $X'_{i,t}$ =Control variables for the REER model: trade openness, terms of trade, Balassa index, government consumption
- $Y'_{i,t}$ =Control variables for the growth model: trade openness, polity 2 (degree of democracy), natural resource rents
- Country and period fixed effects incorporated to control for unobserved heterogeneity

2- Empirical methodology and capital inflow ... *Some Additional statistical hypotheses*

- The presence of **specificities for LICs** (low-income countries) in the GDP growth model.
- The role of the **instability/volatility of capital flights** on the REER or the GDP growth
- The assumption that the impact of capital inflows on REERs and GDP growth rates could be conditional on the **exchange rate regime**

2- Empirical methodology and net capital inflow statistics

- Sample coverage: 77 low an middle income countries (LICs, MICs)
- **Period**: 1980-2012.
- Averaged periods of 5-years are considered
- **Data sources**: WEO, WDI, SWIID

2- Structure of net capital inflow (%)

3- Empirical results: *the REER models*

21

Fü	3- Empirical results: <i>the REER models</i>						
		(1)	(2)	(3)	(4)	(5)	
	Log(REER) (-1)	0.332***	0.321***	0.261***	0.291***	0.359***	
		(0.0289)	(0.0381)	(0.0452)	(0.0412)	(0.0390)	
	Log(FDI)		0.0267***		0.0236***		
			(0.00731)		(0.00745)		
	Log(Remittances)		0.171		0.232**		
			(0.115)		(0.114)		
	Log(Aid)		0.141**		0.115**		
			(0.0574)		(0.0504)		
	Log(Other flows)		0.00104		0.0108		
			(0.0118)		(0.00929)		
	Log(Portfolio)		1.494***		2.036***		
			(0.391)		(0.316)		
	Log(Total flows)	0.468***		0.344***		0.526***	
		(0.124)		(0.120)		(0.154)	
	Total flows instability					0.00120	
						(0.000785)	
	Control variables	Yes	Yes	Yes	Yes	Yes	
	Observations	273	271	255	257	272	
	Number of countries	64	63	62	62	64	
	Number of						
	instruments	26	35	27	36	27	
	AR(1)	0.027	0.0307	0.0523	0.0262	0.0195	
	AR(2)	0.8957	0.5722	0.9479	0.5845	0.9696	
	Sargan	0.1012	0.1459	0.1864	0.1635	0.1125	

3- Empirical results: *The REER models*

Development level and exchange rate regimes

		(1)	(2)	(3)	(4)	(5)
Log(REER) (-1)		0.314***	0.322***	0.311***	0.304***	0.310***
		(0.0242)	(0.0381)	(0.0368)	(0.0356)	(0.0328)
Log(FDI)			0.0249***		0.0233**	
			(0.00729)		(0.00914)	
Log(Remittances)			0.0970		0.0715	
			(0.101)		(0.105)	
Log(Aid)			0.118*		0.129*	
			(0.0622)		(0.0695)	
Log(Other flows)			-0.000192		0.0101	
			(0.0109)		(0.00900)	
	Log(Portfolio)		1.253***		1.592***	
			(0.403)		(0.300)	
	Log(FDI)*LIC		-0.0176		-0.114	
			(0.269)		(0.216)	
	Log(Other flows)*LIC		0.180		-0.451	
			(0.582)		(0.886)	
	Log(Portfolio)*LIC		-3.489		1.241	
			(3.166)		(4.793)	
	Log(Remittances)*LIC		1.264***		1.061**	
			(0.482)		(0.488)	
Log(Aid)*LIC			-0.122		-0.0869	
		0.045**	(0.113)	0.455	(0.139)	0.440454
Log(Total flows)		0.345**		0.155		0.413***
		(0.158)		(0.159)		(0.122)
Log(1 otal flows)*LIC		1.001***		1.230***		
		(0.254)		(0.294)		
Log(Total flows)*neg regime						-0.0162***
						(0.00620)
Control variables		Yes	Yes	Yes	Yes	Yes
Observations		273	271	255	257	243
Number of countries		64	63	62	62	62
Number of instruments		30	44	31	45	30
AR(1)		0.028	0.0297	0.0478	0.0242	0.0465
AR(2)		0.8049	0.6502	0.8796	0.6233	0.5733
Sargan		0.1566	0.1259	0.197	0.1926	0.279

F別Di

3- Empirical Results: *the GDP Growth models*

	(1)	(2)	(3)	(4)	(5)	(6)
GDP Growth (-1)	-0.0532**	-0.0706**	-0.0440*	-0.0760**	-0.0459*	-0.0406
	(0.0246)	(0.0339)	(0.0242)	(0.0351)	(0.0251)	(0.0255)
Log(FDI)		0.00534***		0.00465***		
		(0.00136)		(0.00117)		
Log(Remittances)		0.0715**		0.0871***		
		(0.0293)		(0.0302)		
Log(Aid)		-0.0105		-0.00610		
		(0.00965)		(0.00850)		
Log(Other flows)		0.00413***		0.00331***		
		(0.000924)		(0.000768)		
Log(Portfolio)		0.165***		0.195***		
		(0.0448)		(0.0482)		
Log(Total flows)	0.0193***		0.0365***		0.0361**	0.0476**
	(0.00727)		(0.00854)		(0.0153)	(0.0193)
Log(REER)			-0.0108*	-0.0164***		-0.0131**
			(0.00642)	(0.00401)		(0.00635)
Total flows instability					6.51e-05	4.77e-05
					(7.77e-05)	(9.06e-05)
Control variablest	-Yes	-Yes	Yes	Yes	Yes	Yes
Observations	310	311	309	310	310	309
Number of countries	69	70	69	70	69	69
	24	40	25	44	27	20
Number of instruments	24	40	25	41	27	28
AR(1)	0.0221	0.0224	0.0197	0.0204	0.0224	0.02
AR(2)	0.2482	0.2727	0.2119	0.263	0.2094	0.1938
Sargan	0.34/4	0.1414	0.3259	0.114	0.449	0.3765 4

3- Empirical results : *capital inflows and REER*

- The econometric method is not invalidated.
- A 1 percent increase of capital inflows appreciates the REER by roughly 0.5 percent.
- **Disentangling the total capital inflows** into their different components: ODA moderately appreciates REER. *Portfolio* investments has a strong impact, but this impact .
- A peg exchange rate regime mitigates the appreciation effect: efficient monetary controls to regulate domestic credit and prevent inflation pressures.

3- Empirical results Capital inflows and GDP growth

- Total **capital inflows** contribute to a **higher growth rate**, but their instability is not a relevant explanatory variable.
- A doubling of the per capita total capital inflows leads to an increase of the average annual growth rate by about 50%.
- From the positive impact of inflows to the negative one through the REER. A 100 % appreciation of the REER is associated with a 25% reduction in annual GDP growth rate (loss of one percentage point of the average GDP growth).

- Public aid remains the main external financial source for LICs. **The role of ODA is smaller for MICs** which depend more on FDIs and remittances.
- Net capital inflows affect the REER and the impact is more pronounced for LICs (low supply-side capacity, appreciation of non-tradables).
- Strong impact of net capital inflows on the GDP growth, but no difference on this variable according to the level of development. No detrimental impact of capital instability

- Doubling net capital inflows would have led, ceteris paribus, to a net increase of average growth of about 2 % over the period 1980-2012.
- By managing the indirect and negative impact of capital inflows through the REER, this doubling of financial resources would have resulted in a growth rate of 7.4 % against the 3.7 % observed over the period (1980-2012).

Does It Pour When it Rains? Capital Flows and Economic Growth in Developing Countries

Thanks for your attention