Governance Quality and Net Migration Flows

Andrea Ariu¹ Frédéric Docquier² Mara Squicciarini³

Clermont-Ferrand 24 January 2014

¹FNRS and IRES ²FNRS and IRES ³LICOS (KULeuven) and FWO

A. Ariu, F. Docquier & M.P. Squicciarini ()

Governance Quality and Net Flows

Motivation:

"Yet what distinguishes Italy from its peers is not the absolute number of its exiled graduates [...], but that it has a net "brain drain", something more typical of a developing economy. In other words, the number of educated Italians leaving the country exceeds the number of educated foreigners entering it."

"No Italian jobs", The Economist, Jan 6th 2011

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

"Italy's "nepotism" fuels supply of young, middle class and educated émigrés" The Guardian, July 15th, 2011

- Preference-Push: QI at origin → emigration as a response to bad institutions (Hirschman, 1970)
- Preference-Pull: QI at destination → willingness to migrate to countries with good institutions
- Rent Seeking: QI at origin \rightarrow high-skilled benefiting from poor institutions and emigrating less (Mariani, 2007)
- Forced-Retention: QI at origin → large emigration costs with bad institutions. Skill differences in retention policies (McKenzie, 2007)

< ロト < 同 > < 三 > < 三 > 二 三

"Italy's "nepotism" fuels supply of young, middle class and educated émigrés"

The Guardian, July 15th, 2011

- Preference-Push: QI at origin → emigration as a response to bad institutions (Hirschman, 1970)
- Preference-Pull: QI at destination → willingness to migrate to countries with good institutions
- Rent Seeking: QI at origin \rightarrow high-skilled benefiting from poor institutions and emigrating less (Mariani, 2007)
- Forced-Retention: QI at origin → large emigration costs with bad institutions. Skill differences in retention policies (McKenzie, 2007)

< ロト < 同 > < 三 > < 三 > 二 三

"Italy's "nepotism" fuels supply of young, middle class and educated émigrés"

The Guardian, July 15th, 2011

- Preference-Push: QI at origin → emigration as a response to bad institutions (Hirschman, 1970)
- Preference-Pull: QI at destination → willingness to migrate to countries with good institutions
- Rent Seeking: QI at origin \rightarrow high-skilled benefiting from poor institutions and emigrating less (Mariani, 2007)
- Forced-Retention: QI at origin → large emigration costs with bad institutions. Skill differences in retention policies (McKenzie, 2007)

"Italy's "nepotism" fuels supply of young, middle class and educated émigrés"

The Guardian, July 15th, 2011

- Preference-Push: QI at origin → emigration as a response to bad institutions (Hirschman, 1970)
- Preference-Pull: QI at destination → willingness to migrate to countries with good institutions
- Rent Seeking: QI at origin → high-skilled benefiting from poor institutions and emigrating less (Mariani, 2007)
- Forced-Retention: QI at origin → large emigration costs with bad institutions. Skill differences in retention policies (McKenzie, 2007)

< ロト < 同 > < 三 > < 三 > 二 三

"Italy's "nepotism" fuels supply of young, middle class and educated émigrés"

The Guardian, July 15th, 2011

- Preference-Push: QI at origin → emigration as a response to bad institutions (Hirschman, 1970)
- Preference-Pull: QI at destination → willingness to migrate to countries with good institutions
- Rent Seeking: QI at origin → high-skilled benefiting from poor institutions and emigrating less (Mariani, 2007)
- Forced-Retention: QI at origin → large emigration costs with bad institutions. Skill differences in retention policies (McKenzie, 2007)

イロト イポト イヨト イヨト

This Paper

Analyze the effect of Quality of Institutions on the Migration Balance

- net bilateral migration flows per skill level
- construct single indicator for QI
- look at different migration corridors (North-South)
- use IV strategy to tackle endogeneity

Findings

- QI affects net migration flows both for HS and LS
- Responsiveness of LS higher than HS
- Outflows: HS more interested in QI
 - HS more involved in rent seeking
 - more difficult to leave a country with low QI for HS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This Paper

Analyze the effect of Quality of Institutions on the Migration Balance

- net bilateral migration flows per skill level
- construct single indicator for QI
- look at different migration corridors (North-South)
- use IV strategy to tackle endogeneity

Findings

- QI affects net migration flows both for HS and LS
- Responsiveness of LS higher than HS
- Outflows: HS more interested in QI
 - HS more involved in rent seeking
 - more difficult to leave a country with low QI for HS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contribution:

Macro data to identify size and structure of migration flows

- Mayda (2010): push factors have small impact compared to geographic variables and pull factors
- Docquier et al. (2007): by educational level → HS less sensitive to geographic variables and more to economic factors
- Grogger and Hanson (2011): pattern of positive selection and positive sorting

Effect of Migration on Governance

- Docquier and Rapoport (2003): high emigration rates increase incentive to improve QI
- Li and MCHale (2005): impact of skilled migrants on sending countries
- Spilimbergo (2009): foreign trained individuals promote democracy in home country

Contribution:

Macro data to identify size and structure of migration flows

- Mayda (2010): push factors have small impact compared to geographic variables and pull factors
- Docquier et al. (2007): by educational level \rightarrow HS less sensitive to geographic variables and more to economic factors
- Grogger and Hanson (2011): pattern of positive selection and positive sorting

Effect of Migration on Governance

- Docquier and Rapoport (2003): high emigration rates increase incentive to improve QI
- Li and MCHale (2005): impact of skilled migrants on sending countries
- Spilimbergo (2009): foreign trained individuals promote democracy in home country

A. Ariu, F. Docquier & M.P. Squicciarini ()

Random Utility Model (RUM) of migration

- individual born in country *i* decides whether to stay in *i* or to migrate to *j*
- utility of staying in *i* is:

$$u_{ii} = \alpha \left(W_i - \tau I_i \right) + \beta I_i + \varepsilon_{ii} \equiv \overline{u}_{ii} + \varepsilon_{ii}$$

• utility of migrating to *j* is:

$$u_{ij} = \alpha w_j + \beta I_j - C_{ij} + \varepsilon_{ij} \equiv \overline{u}_{ij} + \varepsilon_{ii}$$

• with:

$$C_{ij} = \delta \ln d_{ij} - \epsilon \ln N_{ij} - \rho \ln M_{jj} - \lambda I_i$$
(1)

where:

- α is the marginal utility of income
- β is *Preference Push* (or *Pull*) channel
- τ is the *Rent Seeking* channel
- λ is the *Forced Retention* channel

Random Utility Model (RUM) of migration

- individual born in country i decides whether to stay in i or to migrate to j
- utility of staying in i is:

$$u_{ii} = \alpha \left(w_i - \tau I_i \right) + \beta I_i + \varepsilon_{ii} \equiv \overline{u}_{ii} + \varepsilon_{ii}$$

utility of migrating to j is:

$$u_{ij} = \alpha w_j + \beta I_j - C_{ij} + \varepsilon_{ij} \equiv \overline{u}_{ij} + \varepsilon_{ii}$$

with:

$$C_{ij} = \delta \ln d_{ij} - \epsilon \ln N_{ij} - \rho \ln M_{jj} - \lambda I_i$$
(1)

4 D b 4 B b

where:

- α is the marginal utility of income
- β is *Preference Push* (or *Pull*) channel
- τ is the *Rent Seeking* channel
- λ is the *Forced Retention* channel

B > 4 B >

• The bilateral migration outflow from *i* to *j* is:

$$\ln M_{ij} = \alpha (w_j - w_i) + \beta I_j - (\beta - \alpha \tau - \lambda) I_i$$

$$-\delta \ln d_{ij} + \epsilon \ln N_{ij} + \rho \ln M_{jj} + \ln M_{ii}$$
(2)

 The migration balance of *i* with respect to *j* is defined as the log ratio of immigrants to emigrants:

$$\ln \frac{M_{ji}}{M_{ij}} = 2\alpha \left(w_i - w_j \right) + \left(2\beta - \alpha \tau - \lambda \right) \left(l_i - l_j \right)$$

$$+\epsilon \ln \frac{N_{ji}}{N_{ij}} + (1 - \rho) \ln \frac{M_{jj}}{M_{ii}}$$
(3)

Back 1/ ■

8/27

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

CF. 24 January 2014

A. Ariu, F. Docquier & M.P. Squicciarini ()

Governance Quality and Net Flows

• The bilateral migration outflow from *i* to *j* is:

$$\ln M_{ij} = \alpha (w_j - w_i) + \beta I_j - (\beta - \alpha \tau - \lambda) I_i$$

$$-\delta \ln d_{ij} + \epsilon \ln N_{ij} + \rho \ln M_{jj} + \ln M_{ji}$$
(2)

The migration balance of *i* with respect to *j* is defined as the log ratio of immigrants to emigrants:

$$\ln \frac{M_{ji}}{M_{ij}} = 2\alpha (w_i - w_j) + (2\beta - \alpha\tau - \lambda) (I_i - I_j)$$
(3)
+ $\epsilon \ln \frac{N_{ji}}{N_{ij}} + (1 - \rho) \ln \frac{M_{jj}}{M_{ii}}$

Back 1/1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problems to estimate (3):

Issue: Selection of inflows and outflows

Solution: we proceed similar to Helpman et al. (2008):

- run a selection equation for inflow and outflow separately and get two IMRs
- 2 run a simple OLS using the difference between the two IMR to control for selection in (3)
- 3 as predicted by the model, we use symmetric bilateral factors (C_{ij}) as exclusion restriction

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Problems to estimate (3):

Issue: Selection of inflows and outflows

Solution: we proceed similar to Helpman et al. (2008):

- run a selection equation for inflow and outflow separately and get two IMRs
- In the simple OLS using the difference between the two IMR to control for selection in (3)
- as predicted by the model, we use symmetric bilateral factors (C_{ij}) as exclusion restriction

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Migration Data:

- Docquier et al. (2012): 195x195 matrix of bilateral migration stocks by skill group (college graduates vs less educated individuals, 1990 & 2000)
- From this dataset we compute:
 - the log net migration flows, $\ln \frac{M_{ij}}{M_{ii}}$
 - the log of diasporas, $\ln \frac{N_{ij}}{N_{ii}}$

Distance Variables:

- From CEPII:
 - Distance (log)
 - Colonial Links
 - Common Official Language
 - Border Sharing

Migration Data:

- Docquier et al. (2012): 195x195 matrix of bilateral migration stocks by skill group (college graduates vs less educated individuals, 1990 & 2000)
- From this dataset we compute:
 - the log net migration flows, $\ln \frac{M_{ij}}{M_{ii}}$
 - the log of diasporas, $\ln \frac{N_{ij}}{N_{ii}}$

Distance Variables:

- From CEPII:
 - Distance (log)
 - Colonial Links
 - Common Official Language
 - Border Sharing

Data

Quality of Governance:

- Kaufman et al. (2009):
 - Voice and Accountability
 - Political Stability
 - Government Effectiveness
 - Regulatory Quality
 - Rule of Law
 - Control of Corruption
- Principal Component Analysis (PCA) to reduce the dimension of the governance indicators and get a unique synthetic indicator of QI

A. Ariu, F. Docquier & M.P. Squicciarini ()

Governance Quality and Net Flows

CF, 24 January 2014 11 / 27

A (10) + A (10) +

Data

Quality of Governance:

- Kaufman et al. (2009):
 - Voice and Accountability
 - Political Stability
 - Government Effectiveness
 - Regulatory Quality
 - Rule of Law
 - Control of Corruption
- Principal Component Analysis (PCA) to reduce the dimension of the governance indicators and get a unique synthetic indicator of QI

A. Ariu, F. Docquier & M.P. Squicciarini ()

Governance Quality and Net Flows

CF, 24 January 2014 11 / 27

メ 伊 ト メ ヨ ト メ ヨ ト

Wage rates by educational level:

- Estimated using:
 - GDP per capita from World Bank Indicators
 - Structure of the labor force from Docquier et al. (2012)

Relative productivity of workers:

- Correct for the true productivity of migrants in destination countries:
 - relative productivity of migrants and natives in each country (Coulombe and Tremblay, 2009): college graduates from Angola or Portugal have a productivity level of 0.73 & 0.85 of Canadian graduates.
 - We adjust balances to account for the imperfect comparability between entries and exits

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Wage rates by educational level:

- Estimated using:
 - GDP per capita from World Bank Indicators
 - Structure of the labor force from Docquier et al. (2012)

Relative productivity of workers:

- Correct for the true productivity of migrants in destination countries:
 - relative productivity of migrants and natives in each country (Coulombe and Tremblay, 2009): college graduates from Angola or Portugal have a productivity level of 0.73 & 0.85 of Canadian graduates.
 - We adjust balances to account for the imperfect comparability between entries and exits

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stylized Facts

Descriptives 1/1

э

Data

Governance Quality and Net Flows

CF, 24 January 2014 13 / 27

イロン イロン イヨン イヨン

Stylized Facts

Data

Governance Quality and Net Flows

CF, 24 January 2014 14 / 27

イロト イポト イヨト イヨト

Results:

PANEL A: High Skilled Balance							
△ Control of Corruption	(1) 0.265*** (0.010)	(2)	(3)	(4)	(5)	(6)	
Δ Rule of Law	()	0.218*** (0.009)					
Δ Pol. Stability		, ,	0.142*** (0.009)				
Δ Voice and Account.			. ,	0.179*** (0.008)			
Δ Governm. Effectiveness				. ,	0.283*** (0.010)		
Δ Regul. Quality					. ,	0.240*** (0.009)	
∆ Wage	0.000 (0.000)	0.001*** (0.000)	0.001*** (0.000)	0.004*** (0.000)	0.000 (0.000)	0.001** (0.000)	
Δ Population	-0.005 [*] (0.003)	0.003 (0.003)	0.004 (0.004)	0.009*** (0.003)	-0.017*** (0.003)	-0.013*** (0.003)	
Δ Diaspora	0.547*** (0.009)	0.563*** (0.009)	0.580*** (0.009)	0.569*** (0.009)	0.552*** (0.009)	0.566*** (0.009)	
ΔIMR	-0.142** (0.070)	-0.063 (0.074)	-0.418*** (0.081)	0.050 (0.080)	-0.043 (0.071)	-0.095 (0.072)	
Constant	0.000 (0.009)	0.000 (0.009)	0.000 (0.009)	0.000 (0.009)	0.000 (0.009)	0.000 (0.009)	
R ²	0.46	0.45	0.44	0.45	0.46	0.45	
Observations	30,800	31,506	29,070	31,506	30,800	30,800	

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

2

ヘロト 人間ト 人造ト 人造ト

Results:

PANEL B: Low Skilled Balance								
	(1)	(2)	(3)	(4)	(5)	(6)		
△ Control of Corruption	0.291***	(=)	(-)	(.)	(-)	(-)		
	(0.014)							
∆ Rule of Law	. ,	0.255***						
		(0.014)						
△ Pol. Stability			0.153***					
			(0.014)					
∆ Voice and Account.				0.254***				
				(0.011)				
∆ Governm. Effectiveness					0.323***			
					(0.014)			
∆ Regul. Quality						0.219***		
						(0.013)		
∆ Wage	0.030***	0.032***	0.039***	0.039***	0.031***	0.036***		
	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.002)		
Δ Population	-0.023***	-0.015***	-0.014***	-0.006	-0.038***	-0.037***		
	(0.004)	(0.004)	(0.005)	(0.004)	(0.004)	(0.004)		
∆ Diaspora	0.436***	0.460***	0.438***	0.472***	0.467***	0.462***		
	(0.011)	(0.011)	(0.012)	(0.011)	(0.011)	(0.011)		
ΔIMR	0.835***	1.003***	0.735***	1.231***	1.221***	1.067***		
	(0.110)	(0.114)	(0.122)	(0.115)	(0.116)	(0.117)		
Constant	0.000	0.000	0.000	0.000	0.000	0.000		
	(0.012)	(0.012)	(0.013)	(0.012)	(0.012)	(0.012)		
R ²	0.33	0.32	0.32	0.32	0.33	0.32		
Observations	29,070	30,102	27,390	30,102	29,070	29,070		

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

2

イロン イ理 とく ヨン イ ヨン・

Results:

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Sample	All to All	Non-Adjusted	WLS	South-North	North-South	South-South	North-North
			PANEL A	: High Skilled			
Δ PCA	0.260***	0.306***	0.251***	0.317***	0.317***	0.202***	0.136
	(0.010)	(0.011)	(0.009)	(0.039)	(0.039)	(0.011)	(0.227)
∆ Wage	0.001***	0.002***	0.001**	-0.001	-0.001	0.002***	-0.156***
	(0.000)	(0.000)	(0.000)	(0.001)	(0.001)	(0.000)	(0.023)
△ Population	-0.004	-0.001	-0.003	-0.049***	-0.049***	0.004	-0.741***
	(0.003)	(0.003)	(0.003)	(0.012)	(0.012)	(0.003)	(0.084)
∆ Diaspora	0.555***	0.594***	0.532***	0.633***	0.633***	0.541***	0.136***
	(0.009)	(0.010)	(0.005)	(0.015)	(0.015)	(0.012)	(0.043)
ΔIMR	0.038	0.108	0.045	-0.813***	-0.813***	0.116	-43.395***
	(0.079)	(0.084)	(0.083)	(0.306)	(0.306)	(0.079)	(5.046)
Constant	0.000	0.000	0.000	0.052	-0.052	-0.061***	0.000
	(0.009)	(0.010)	(0.009)	(0.072)	(0.072)	(0.009)	(0.089)
R ²	0.45	0.47	0.44	0.49	0.49	0.39	0.32
Observations	29,070	29,070	29,070	4,340	4,340	23,800	930
			PANEL B	: Low Skilled			
Δ PCA	0.313***	0.268***	0.310***	0.535***	0.535***	0.235***	0.915***
	(0.015)	(0.015)	(0.014)	(0.058)	(0.058)	(0.015)	(0.274)
∆ Wage	0.035***	0.032***	0.033***	0.028***	0.028***	0.028***	-0.049*
-	(0.002)	(0.001)	(0.001)	(0.004)	(0.004)	(0.002)	(0.026)
△ Population	-0.021***	-0.024***	-0.019***	-0.052***	-0.052***	-0.016***	0.228***
	(0.005)	(0.005)	(0.005)	(0.015)	(0.015)	(0.005)	(0.064)
∆ Diaspora	0.470***	0.429***	0.452***	0.552***	0.552***	0.453***	-2.525***
	(0.012)	(0.011)	(0.010)	(0.035)	(0.035)	(0.013)	(0.332)
ΔIMR	1.311***	1.118***	1.324***	1.490***	1.490***	0.991***	-31.262***
	(0.123)	(0.121)	(0.125)	(0.447)	(0.447)	(0.124)	(4.563)
Constant	0.000	0.000	0.000	0.035	-0.035	-0.090***	0.000
	(0.013)	(0.013)	(0.012)	(0.090)	(0.090)	(0.013)	(0.135)
R ²	0.33	0.30	0.32	0.33	0.33	0.28	0.19
Observations	27,390	27,390	27,390	4,080	4,080	22,440	870
Standard errors in parentheses. * p < 0.1. ** p < 0.05. ** p < 0.01.							

Table: Net migration Flows and PCA

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

A. Ariu, F. Docquier & M.P. Squicciarini ()

Problems:

- Skill-biased migration can affect institutions (Acemoglu et al., 2005)
- High emigration rates provide incentives to reduce rent-seeking (Docquier and Rappoport, 2003)

Solution:

- IV Strategy
- Quality of institutions of neighboring countries as instrument

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Problems:

- Skill-biased migration can affect institutions (Acemoglu et al., 2005)
- High emigration rates provide incentives to reduce rent-seeking (Docquier and Rappoport, 2003)

Solution:

- IV Strategy
- Quality of institutions of neighboring countries as instrument

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results:

	(1)	(2)	(3)	(4)	(5)	(6)
	All to All	Non-Adjusted	South-North	North-South	South-South	North-North
		PAN	NEL A: High S	killed		
Δ PCA	0.412***	0.475***	0.667***	0.679***	0.004	2.568***
	(0.015)	(0.016)	(0.091)	(0.091)	(0.025)	(0.415)
∆ Wage	0.002***	0.002***	-0.002	-0.002	0.002***	-0.125***
	(0.001)	(0.001)	(0.002)	(0.002)	(0.000)	(0.022)
△ Population	0.001	0.004	-0.027**	-0.026**	-0.013***	-0.486***
	(0.003)	(0.003)	(0.013)	(0.013)	(0.004)	(0.082)
∆ Diaspora	0.530***	0.567***	0.615***	0.614***	0.413***	-0.022
	(0.005)	(0.005)	(0.012)	(0.012)	(0.006)	(0.044)
ΔIMR	0.583***	0.709***	0.065	0.094	-0.167°	-28.649***
	(0.097)	(0.103)	(0.400)	(0.400)	(0.096)	(5.225)
Constant	-0.000	-0.000	0.511***	-0.526***	-0.000	-0.000
	(0.009)	(0.010)	(0.128)	(0.128)	(0.009)	(0.095)
R ²	0.45	0.46	0.48	0.48	0.20	0.21
Observations	29,070	29,070	4,340	4,340	19,460	930
		PAI	NEL B: Low SI	killed		
Δ PCA	0.675***	0.618***	1.340***	1.333***	0.020	2.812***
	(0.030)	(0.030)	(0.148)	(0.147)	(0.044)	(0.726)
∆ Wage	0.029***	0.026***	0.024***	0.024***	0.011***	-0.057*
	(0.002)	(0.002)	(0.005)	(0.005)	(0.002)	(0.031)
△ Population	-0.009*	-0.013**	-0.016	-0.016	-0.024***	0.291***
	(0.005)	(0.005)	(0.017)	(0.017)	(0.006)	(0.077)
∆ Diaspora	0.541***	0.498***	0.697***	0.696***	0.321***	-2.254***
	(0.012)	(0.012)	(0.042)	(0.042)	(0.015)	(0.417)
ΔIMR	2.517***	2.282***	3.948***	3.928***	-0.093	-25.718***
	(0.159)	(0.157)	(0.623)	(0.621)	(0.190)	(5.892)
Constant	-0.000	-0.000	0.708***	-0.702***	-0.000	-0.000
	(0.013)	(0.013)	(0.147)	(0.147)	(0.013)	(0.137)
R ²	0.31	0.29	0.30	0.30	0.17	0.15
Observations	27,390	27,390	4,080	4,080	18,360	870

Table: IV: PCA in Neighboring countries

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

A. Ariu, F. Docquier & M.P. Squicciarini ()

Governance Quality and Net Flows

э

イロン イロン イヨン イヨン

Puzzle:

- Why is $2\beta_l \alpha_l \tau_l \lambda_l > 2\beta_h \alpha_h \tau_h \lambda_h$?
- Either $\alpha_h \tau_h > \alpha_I \tau_I$ (high skilled more involved in rent seeking)
- Or λ_h > λ_l (forced retention for high-skilled)
- No data to disentangle the effects
- Use migration outflows to better understand the mechanisms at work
- Use PPML for the zeros

A. Ariu, F. Docquier & M.P. Squicciarini ()

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Effects on Outflows:

- QI at Origin has negative impact
- QI at Destination has positive impact
 - more for HS than for LS
 - particularly important for developing countries->FDI?

Evidence:

- High-Skilled more attracted by quality of institutions abroad
- HS might benefit from bad governance (no Rent Seeking)
- HS have more difficulties to leave the origin country (no *Forced Migration*)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Effects on Outflows:

- QI at Origin has negative impact
- QI at Destination has positive impact
 - more for HS than for LS
 - particularly important for developing countries->FDI?

Evidence:

- High-Skilled more attracted by quality of institutions abroad
- HS might benefit from bad governance (no Rent Seeking)
- HS have more difficulties to leave the origin country (no *Forced Migration*)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

Findings

- QI impact net migration flows both for HS and LS
- Although HS have stronger preferences for QI, their response is milder
 - they are more involved in rent seeking than LS
 - easier for LS to leave a country with low QI

Policy:

- For poor countries:
 - good institutions attract high-skilled from both developing and developed countries (FDI?)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Conclusions

Findings

- QI impact net migration flows both for HS and LS
- Although HS have stronger preferences for QI, their response is milder
 - they are more involved in rent seeking than LS
 - easier for LS to leave a country with low QI

Policy:

- For poor countries:
 - good institutions attract high-skilled from both developing and developed countries (FDI?)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Thank you!

A. Ariu, F. Docquier & M.P. Squicciarini ()

Governance Quality and Net Flows

CF, 24 January 2014 23 / 27

э

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• probability that an individual born in country *i* will move to country *j*:

$$\Pr\left[u_{ij} = \max_{k} u_{ik}\right] = \frac{\exp\left[\overline{u}_{ij}\right]}{\sum_{k} \exp\left[\overline{u}_{ik}\right]},$$

• the bilateral ratio of migrants in country j to the non-migrants is given by:

$$\frac{M_{ij}}{M_{ii}} = \frac{\exp\left[\overline{u}_{ij}\right]}{\exp\left[\overline{u}_{ii}\right]} = \frac{\exp\left[\alpha w_j + \beta l_j - C_{ij}\right]}{\exp\left[\alpha \left(w_i + \tau l_i\right) + \beta l_i\right]}$$

 the log ratio of emigrants from i to j to residents of i is given by the following expression

$$\ln\left[\frac{M_{ij}}{M_{ii}}\right] = \alpha \left[w_j - w_i\right] + \beta I_j - (\beta - \alpha \tau) I_i - C_{ij}$$
(4)

A. Ariu, F. Docquier & M.P. Squicciarini ()

CF, 24 January 2014 24 / 27

(a)

• probability that an individual born in country *i* will move to country *j*:

$$\Pr\left[u_{ij} = \max_{k} u_{ik}\right] = \frac{\exp\left[\overline{u}_{ij}\right]}{\sum_{k} \exp\left[\overline{u}_{ik}\right]},$$

• the bilateral ratio of migrants in country j to the non-migrants is given by:

$$\frac{M_{ij}}{M_{ii}} = \frac{\exp\left[\overline{u}_{ij}\right]}{\exp\left[\overline{u}_{ii}\right]} = \frac{\exp\left[\alpha w_{j} + \beta I_{j} - C_{ij}\right]}{\exp\left[\alpha \left(w_{i} + \tau I_{i}\right) + \beta I_{i}\right]}$$

 the log ratio of emigrants from i to j to residents of i is given by the following expression

$$\ln\left[\frac{M_{ij}}{M_{ii}}\right] = \alpha \left[w_j - w_i\right] + \beta I_j - (\beta - \alpha \tau) I_i - C_{ij}$$
(4)

A. Ariu, F. Docquier & M.P. Squicciarini ()

CF, 24 January 2014 24 / 27

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• probability that an individual born in country *i* will move to country *j*:

$$\Pr\left[u_{ij} = \max_{k} u_{ik}\right] = \frac{\exp\left[\overline{u}_{ij}\right]}{\sum_{k} \exp\left[\overline{u}_{ik}\right]},$$

• the bilateral ratio of migrants in country j to the non-migrants is given by:

$$\frac{M_{ij}}{M_{ii}} = \frac{\exp\left[\overline{u}_{ij}\right]}{\exp\left[\overline{u}_{ii}\right]} = \frac{\exp\left[\alpha w_{j} + \beta I_{j} - C_{ij}\right]}{\exp\left[\alpha \left(w_{i} + \tau I_{i}\right) + \beta I_{i}\right]}$$

 the log ratio of emigrants from i to j to residents of i is given by the following expression

$$\ln\left[\frac{M_{ij}}{M_{ii}}\right] = \alpha \left[w_j - w_i\right] + \beta I_j - (\beta - \alpha \tau) I_i - C_{ij}$$
(4)

A. Ariu, F. Docquier & M.P. Squicciarini ()

CF, 24 January 2014 24 / 27

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Bac

Stylized Facts

Variable	Obs	Mean	Std. Dev.	Min	Max
Net high skilled	37,830	0	2.1790	-12.7328	12.7328
Net high skilled Down.	37,830	0	2.0304	-12.2595	12.2595
Nel low skilled	37,830	0	2.4536	-12.5255	12.5255
Net low skilled Down.	37,830	0	2.5422	-12.7413	12.7413
Δ Wage _{hs}	37,442	0	41.7907	-217.4711	217.4711
∆ Wage _{ls}	37,442	0	18.5528	-61.8990	61.8990
Δ Log Natives _{hs}	34,040	0	3.5238	-13.8800	13.8800
∆ Log Natives _{/s}	32,220	0	3.2456	-12.3664	12.3664
Δ Log Diaspora	37,830	0	2.7098	-13.4114	13.4114
Δ PCA	33,672	0	1.4180	-4.2800	4.2800
∆ Control of Corruption	35,910	0	1.3962	-4.2007	4.2007
∆ Rule of Law	37,442	0	1.3919	-4.1124	4.1124
△ Political Stability	33,672	0	1.3922	-4.1294	4.1294
△ Violence & Accountability	37,442	0	1.3957	-3.6386	3.6386
∆ Government Efficiency	35,910	0	1.3949	-4.1758	4.1758
∆ Regulatory Quality	35,910	0	1.3839	-4.5501	4.5501
Log Distance	35,532	8.7660	0.7769	4.0879	9.9010
Colonial Links	35,532	0.0109	0.1039	0	1
Common Language	35,532	0.1548	0.3617	0	1
Common Border	35,532	0.0157	0.1245	0	1

Table: Descriptive Statistics

A. Ariu, F. Docquier & M.P. Squicciarini ()

< ∃⇒

1/1 200

Table:	Outflow	ana	lysis
--------	---------	-----	-------

PANEL A: High Skilled	PANEL A: High Skilled							
	(1)	(2)	(3)	(4)	(5)			
	All to All	South-North	North-South	North-North	South-South			
PCA Origin	-0.270***	-0.186***	0.648	-0.305	0.019			
	(0.061)	(0.071)	(0.463)	(0.252)	(0.128)			
PCA Destination	0.452***	0.121	0.699***	-0.140	0.561***			
	(0.070)	(0.359)	(0.197)	(0.286)	(0.116)			
∆ Wage	-0.007***	-0.002	-0.011**	-0.011*	-0.016***			
	(0.002)	(0.002)	(0.005)	(0.007)	(0.002)			
Origin Diaspora	0.599***	0.740***	0.241***	0.519***	0.445***			
	(0.036)	(0.052)	(0.054)	(0.098)	(0.056)			
Colonial Links	0.175	-0.102	0.827**	0.499**	1.055***			
	(0.120)	(0.137)	(0.369)	(0.229)	(0.345)			
Distance	-0.140	-0.048	-0.567**	-0.183	-0.534***			
	(0.086)	(0.092)	(0.244)	(0.128)	(0.136)			
Common Language	0.416***	0.345***	0.553**	0.700***	0.590***			
	(0.131)	(0.115)	(0.235)	(0.229)	(0.180)			
Common Border	0.058	0.326	0.599	-0.065	-0.286			
	(0.358)	(0.464)	(0.672)	(0.291)	(0.252)			
Origin Residents	0.229***	0.204***	0.425***	0.175**	0.309***			
-	(0.032)	(0.038)	(0.070)	(0.073)	(0.063)			
Destination Residents	0.174***	0.140**	0.532***	0.065	0.298***			
	(0.041)	(0.069)	(0.064)	(0.082)	(0.056)			
Constant	-1.928**	-2.362*	-4.936***	2.279	-0.734			
	(0.913)	(1.241)	(0.987)	(1.442)	(0.990)			
R ²	0.68	0.87	0.25	0.47	0.59			
Observations	29,070	4,340	4,340	930	19,460			

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

A. Ariu, F. Docquier & M.P. Squicciarini ()

2

イロン イロン イヨン イヨン

Table: Outflow analysis

PANEL B: Low Skilled					
	(1)	(2)	(3)	(4)	(5)
	All to All	South-North	North-South	North-North	South-South
PCA Origin	-0.270***	0.008	-0.678	-0.608*	0.002
	(0.075)	(0.097)	(0.756)	(0.339)	(0.120)
PCA Destination	0.105	0.316	0.118	0.246	0.308***
	(0.111)	(0.275)	(0.233)	(0.315)	(0.101)
∆ Wage	-0.025***	-0.040***	-0.008	-0.020	-0.004
	(0.008)	(0.011)	(0.019)	(0.016)	(0.012)
Origin Diaspora	0.620***	0.733***	0.461***	0.231***	0.535***
	(0.047)	(0.046)	(0.093)	(0.071)	(0.063)
Colonial Links	-0.454	-0.355*	0.537	0.518	0.085
	(0.280)	(0.208)	(0.486)	(0.404)	(0.466)
Distance	-0.009	-0.101	-0.075	-0.387***	-0.361***
	(0.150)	(0.119)	(0.322)	(0.134)	(0.139)
Common Language	-0.084	0.116	0.283	-0.185	-0.096
	(0.197)	(0.127)	(0.490)	(0.418)	(0.213)
Common Border	0.957	1.250***	0.091	0.602	0.082
	(0.624)	(0.240)	(0.717)	(0.444)	(0.242)
Origin Residents	0.019	0.109***	0.176***	0.234***	-0.084
	(0.037)	(0.033)	(0.067)	(0.080)	(0.058)
Destination Residents	0.197***	0.221***	0.337***	0.256***	0.054
	(0.040)	(0.047)	(0.105)	(0.084)	(0.060)
Constant	-0.473	-3.172***	-1.833	2.214	6.708***
	(1.916)	(0.801)	(2.059)	(1.924)	(0.834)
R ²	0.67	0.98	0.09	0.21	0.26
Observations	29,069	4,340	4,339	930	19,460

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01.

A. Ariu, F. Docquier & M.P. Squicciarini ()

• • • • • • • • • • • • •