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Abstract

We propose a method to derive first- and second-order dominance conditions for para-
metric distributions whenever their respective cumulative distribution functions are ei-
ther not readily available or not easily tractable. Our necessary conditions rely mostly
on the distributions’ moment-generating functions, whereas our sufficient conditions are
mostly derived directly from manipulations of the distributions’ density functions. We
provide results for the Log-normal, Gamma, Fisk, and Weibull distributions.
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1 INTRODUCTION

1 Introduction

Stochastic dominance provides us with an incomplete ordering of distributions, whose
meaning depends on the field of application. For instance, in the realm of poverty measure-
ment, the fulfillment of some dominance condition may ensure that a monetary poverty
comparison is robust to any choice of poverty line and/or of individual poverty function.
The theoretical advantages and disadvantages of stochastic dominance analysis are well
known. Meanwhile, in practice, stochastic dominance testing applied to continuous dis-
tributions requires comparing them over several points along their common domain (e.g.
Davidson and Duclos, 2000, Barret and Donald, 2003). However, if our continuous distri-
butions were parameterised, would it be possible to produce dominance orderings straight-
forwardly by just comparing the respective parameters? The aim of this note is precisely
to derive parametric conditions that ensure first- and second-order stochastic dominance
among parametric distributions that can be useful in different applications, e.g. for model
simulation purposes. Resorting to these conditions, practitioners would be spared the more
cumbersome (but more generally applicable) non-parametric tests.

There is already a substantial literature on the parametric conditions for Lorenz order-
ings (Kleiber and Kotz, 2003), except for generalised beta distribution of first type (GB1).
By contrast, there is not enough work on the parametric stochastic dominance conditions
for different distributions. Levy worked on Truncated Normal (Levy, 1982) and Log Nor-
mal Distributions (Levy, 1973). Klonner derived the first-order dominance conditions for
Singh-Maddala distributions (Klonner, 2000), but not the second-order conditions. Klenke
and Mattner (2010) developed dominance conditions for classical discrete distributions.
As a tractable cumulative distribution function is not readily available for many paramet-
ric distributions, it is difficult to derive their dominance conditions in the usual way, i.e.
by comparing cumulative distribution functions, or their sums (e.g. in the case of higher
orders).

In this paper we propose a novel approach resorting to the distributions’ density func-
tions, which are tractable and readily available. The approach yields three sets conditions
based solely on the distributions’ parameters, which we derive for Log Normal, Gamma,
Fisk, and Weibull distributions; all with support on the positive segment of the real line.
Their fulfillment guarantees, respectively, first-order dominance, second-order dominance,
and Lorenz consistency. Hence, as soon as we know the parameters of two distributions of
the same type, we can ascertain the existence of a dominance relationship between them.

The rest of the paper proceeds as follows: The next section introduces required no-
tation and stochastic dominance definitions. Then the methodology section explains our
method for the derivation of dominance conditions based on density functions of paramet-
ric distributions. Finally, the results section shows the first-order, second-order dominance
conditions, and the Lorenz consistency conditions, for the distributions mentioned above.
The paper ends with some final remarks.
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2 Preliminaries

Let Ω be the domain of a continuous random variable x with distribution A. Also fA(x) ∶
Ω → R+∣ ∫Ω fA(x)dx = 1 is its density function, FA(x) ≡ ∫

x
x f(t)dt is its cumulative distri-

bution function (with x standing for the lowest boundary of the domain), and EA[x] is
its expected value. By stating A ≻

1 B we mean that distribution A first-order dominates
B. Likewise A ≻

2 B means that A second-order dominates B, and A ≻
L B means that

A Lorenz-dominates B. Now we define the three relationships in terms of their welfare-
utility interpretations:

Definition 1. First-order Stochastic Dominance (≻1): EA[u(x)] > EB[u(x)] for all strictly
increasing, continuous utility functions u(x) ∶ Ω → R if and only if FA(x) ⩽ FB(x) ∀x ∈

Ω ∧ ∃x∣FA(x) < FB(x).

Definition 2. Second-order Stochastic Dominance (≻2): EA[u(x)] > EB[u(x)] for all strictly
increasing, strictly concave, continuous utility functions u(x) ∶ Ω→ R if and only if ∫

x
x FA(t)dt ⩽

∫

x
x FB(t)dt ∀x ∈ Ω ∧ ∃x∣ ∫

x
x FA(t)dt < ∫

x
x FB(t)dt.

Definition 3. Lorenz dominance (≻L): IA(x) > IB(x) for all inequality indices I ∶ A → R+

satisfying the properties of anonymity, population replication invariance, scale invariance
and principle of transfers, if and only if 1

EA[x] ∫
y
x xdFA(x) ⩽

1
EB[x] ∫

y
x xdFB(x) ∀y ∈ Ω ∧

∃y∣ 1
EA[x] ∫

y
x xdFA(x) <

1
EB[x] ∫

y
x xdFB(x).

3 Methodology

Our approach relies on density functions which are readily available for parametric distri-
butions, as opposed to cumulative distribution functions. We work with the following set
of assumptions:

Assumption 1. Density functions are absolutely continuous.

Assumption 2. For any absolutely continuous density function f(x), the sign of f ′(x)
changes at most once over the domain of x.

The next step is the derivation of two theorems, whose respective corollaries are used to
derive sufficient dominance conditions when applied to the distributions’ density functions.
Then, the necessary counterparts are derived using the utility functions introduced by
Klonner (2000), again in combination with the parametric features of the distributions’
density functions.

3.1 Tools for the derivation of sufficient conditions

The first theorem is the following:

Theorem 1. If fA(x) − fB(x) starts negative and changes sign at most once, then A ≻
1 B.
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Proof. Let [lA,HA] be the support of A, and the same for B. If fA(x)−fB(x) starts negative
then lB < lA. Now if the sign never changes then the density functions do not overlap
and clearly: FA(x) − FB(x) < 0 ∀x ∈ [lB,HA]. Hence A ≻

1 B. Now if the two density
functions cross only once, then we need to consider the crossing point y where the sign of
fA(x) − fB(x) switches from negative to positive. Clearly FA(x) − FB(x) < 0 ∀x ∈ [lB, y].
But what about the interval [y,HA]? Since, by definition y is a unique crossing point,
then it must be the case that y < HB < HA. Therefore, since FB(HB) = 1, it cannot be the
case that FA(x) − FB(x) > 0 ∀x ∈ [y,HB], since otherwise we would get the absurd result:
FA(HB) > FB(HB) = 1. Finally, since FA ⩽ 1, then it must be the case that: FA(x)−FB(x) <

0 ∀x ∈ [y,HA] as well. ∎

The following corollary provides the operationalization of theorem 1 for our purpose of
deriving first-order dominance conditions for parametric distributions:

Corollary 1. Let z(x) ≡ fA(x)
fB(x) . Then, for first-order dominance favouring A, given the above

assumptions, we require: (1) limx→x z(x) < 1; (2) limx→x z(x) > 1; and (3) z(x) = 1 is unique
in the domain of x.

For the second-order stochastic dominance we rely on the following theorem:

Theorem 2. If (1) fA(x) − fB(x) starts negative, (2) changes sign at most twice, and (3)
EA(x) ⩾ EB(x): then A ≻

2 B.

Proof. From theorem 1 we know that if fA(x) − fB(x) starts negative and changes sign at
most once, then A ≻

1 B, which in turn implies A ≻
2 B. So we need to prove that, if (1)

fA(x) − fB(x) starts negative, (2) changes sign twice, and (3) EA(x) ⩾ EB(x): then A ≻
2 B.

The first step is to realize that if fA(x) − fB(x) starts negative and changes sign twice,
then, using an argument analogous to the one put forward in the proof of theorem 1, it
is easy to show that FA(x) − FB(x) starts negative and changes sign only once, i.e. the
cumulative distribution functions cross only once.

If the cumulative distribution functions cross at point y (in the domain of x) then

∫

y
x [FA(x) − FA(B)]dx < 0. However for second-order dominance we need that relationship

to hold also for the interval [y, x] (where x is the relevant upper boundary value of the
domain). The single crossing of the cumulative distribution functions does not guarantee
this required result. However, we have imposed that EA(x) ⩾ EB(x). Since, it is easy to
show that: EA(x) − EB(x) = ∫

x
x [FB(x) − FA(x)]dx, and we are imposing EA(x) ⩾ EB(x),

then it must be the case that ∫
y
x [FA(x) − FA(B)]dx < 0 for the whole relevant domain,

which implies: A ≻
2 B.

∎

As before, we derive a corollary enabling us to apply theorem 2 in practice:

Corollary 2. Let z(x) ≡
fA(x)
fB(x) . Then, for second-order dominance favouring A, given the

above assumptions, we require: (1) limx→x z(x) < 1; (2) limx→x z(x) < 1; (3) z(x) has a global
maximum; (4) EA(x) ⩾ EB(x).
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3.2 Tools for the derivation of necessary conditions

We derive the necessary conditions relying on the definitions of stochastic dominance used
by Klonner (2000). For first-order dominance we use the utility function: u(x) = 1

tx
t
∀t /= 0;

whereas for second-order we use the utility function: u(x) = 1
tx

t
∀t < 0. In both cases, we

derived the expected values of u(x) for each distribution using its corresponding moment-
generating function. Then taking certain limits of t (e.g. toward 0 or ∞) we can deduce the
necessary dominance conditions. A full-fledged illustration of how this method works, in
tandem with the method for sufficient conditions, is shown in the Appendix.

4 Results

Using the above tools we report the following results for several two-parameter distribu-
tions: Log Normal, Log Logistic, Gamma, Weibull and Uniform distribution:

4.1 The Log Normal distribution

The lognormal distribution can be defined as:

fA(x) =
1

xσA
√

2π
exp−

1

2σ2
A

(lnx − µA)
2; x,µ, σ > 0 (1)

The conditions ensuring dominance of A over B are as follows:

• First-order dominance - necessary and sufficient: µA > µB and σA = σB.

• Second-order dominance - necessary and sufficient: µA > µB, σA ⩽ σB, and µA +
σ2
A

2 ⩾

µB +
σ2
B

2 .

• Lorenz dominance - necessary and sufficient: σA < σB

Of course, as it is to be expected generally, first-order dominance implies second-order
dominance, which in turn implies Lorenz dominance (but the reverses are not true).

Figure 1 shows the dominance regions of the log-normal distribution, defined by com-
binations of its two parameters. For an hypothetical distribution g we show its parameters
µg and σg, together with an iso-mean function denoted by Eg(x) (i.e. exp(µg +

σ2
g

2 ) = exp(µ+
σ2

2 )), and an iso-variance function denoted by V arg(x) (i.e. (exp(σ2
g) − 1) exp(2µg + σ

2
g)) =

(exp(σ2
) − 1) exp(2µ + σ2

). The upper contour sets of both curves represent higher mean
and variance, respectively.

Therefore, the area to the right of the blue (solid and dotted) line denoting σg compre-
hends all the log-normal distributions Lorenz dominated by g, whereas the area to the left
(light blue arrows) represents all the distributions that Lorenz dominate g. Likewise, the
solid blue line hosts all the distributions first-order dominating g, while the dotted blue
line collects all the distributions first-order dominated by g. (The rest of the quadrant can-
not be ordered vis-a-vis g in terms of first-order dominance). Finally, the area delimited
by the iso-mean function, the solid blue line and the vertical axis, shows the distributions
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that second-order dominate g, whereas the area bounded by the iso-mean function, the
dotted blue line and the horizontal axis hosts the distributions second-order dominated by
g.

Figure 1: Dominance regions in the Log-normal distribution

4.2 The Gamma distribution

The Gamma distribution is defined as:

fA(x) =
1

bpAA Γ(pA)
xpA−1 exp(−

x

bA
), (2)

where x, b, p > 0, and Γ(p) = ∫
∞

0 xp−1 exp(−x)dx is the Gamma function. The dominance
conditions are the following:

• First-order dominance - sufficient: pA > pB and bA > bB; necessary: pA > pB and
pAbA > pBbB.

• Second-order dominance - necessary and sufficient: pA > pB and pAbA > pBbB.

• Lorenz dominance - necessary and sufficient: pA > pB.
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Figure 2: Dominance regions in the Gamma distribution

Figure 2 shows now the dominance regions for the Gamma distribution. The light blue
arrows point to the part of the quadrant where distributions Lorenz dominate distribution
g, i.e. toward the right of pg. To the left, distributions are Lorenz dominated by g. The
region between the two solid blue lines (with origin in the point ((pg, bg))) contains the
parametric combinations that yield distributions first-order dominating g; whereas the
region bounded by the dotted blue lines and the two axes hosts all the distributions first-
order dominated by g. Finally, the region made by the upper contour set of the intersection
between the vertical solid blue line and the iso-mean curve crossing through ((pg, bg)),
provides the distributions that second-order dominate g. By contrast, the lower contour
set of the intersection between the vertical dotted blue line and the same iso-mean curve
collect the distributions that are second-order dominated by g.

4.3 The Log Logistic or Fisk distribution

The Log Logistic distribution is defined as:

fA(x) =
aAx

aA−1

baAA [1 + (
x
bA

)
aA]2

; x, a, b > 0 (3)

As the first moment of this distribution is not defined unless aA > 1, we impose a > 1.
The dominance conditions are the following:

• First-order dominance - necessary and sufficient: bA > bB and aA = aB.

• Second-order dominance - necessary and sufficient: aA ⩾ aB and πbA
aA sin( π

aA
)
⩾

πbB
aB sin( π

aB
)
.

• Lorenz dominance - necessary and sufficient: aA ⩾ aB.
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Figure 3: Dominance regions in the Fisk distribution

Figure 3 shows the dominance regions for the log-logistic or Fisk distribution. As
before, the light blue arrows point toward the region where the distributions Lorenz-
dominate g (right of the vertical blue line passing through ag). The rest of the quadrant
is made of distributions which are Lorenz-dominated by g. The solid blue line represents
all the distributions that first-order dominate g, whereas the dotted blue line represents
the distributions first-order dominated by g. Finally, the solid black curve represents the
iso-mean curve passing through ((ag, βg)). The region made by the upper contour set of
the intersection between the solid blue line and the iso-mean curve collects all the dis-
tributions that second-order dominate g. By contrast, the region delimited between the
iso-mean curve, the dotted blue line and the horizontal axis represents the distributions
that are second-order dominated by g.

4.4 The Weibull distribution

The Weibull distribution is defined as:

fA(x) =
aA
βaAA

xaA−1 exp[−(
x

βA
)
aA

]; x, a, β > 0 (4)

The dominance conditions are the following:

• First-order dominance - necessary and sufficient: βA > βB and aA = aB.

• Second-order dominance - necessary and sufficient: aA ⩾ aB and βAΓ(1+ 1
aA

) ⩾ βBΓ(1+
1
aB

).

• Lorenz dominance - necessary and sufficient: aA ⩾ aB.
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Figure 4: Dominance regions in the Weibull distribution

Figure 4 shows the dominance regions for the Weibull distribution. As in many cases
before, the distributions Lorenz dominating g are found on the right of the vertical blue line
intersecting the horizontal axis at ag. The rest of the quadrant corresponds to distributions
Lorenz dominated by g. First-order dominance against g occurs along the solid blue line,
whereas first-order dominance favouring g takes place along the dotted blue line. Finally,
the region formed by the upper contour set of the intersection between the solid blue line
and the black iso-mean curve provides the distributions that second-order dominate g,
whereas the region formed by the iso-mean curve, the dotted blue line, and the horizontal
axis, contains all the distribution second-order dominated by g.

5 Conclusions

In this paper we have characterized the parametric conditions for stochastic dominance
pertaining to the Log-normal, Gamma, Log-logistic, and Weibull distributions. Our method
avoids the use of cumulative distribution functions (and its respective accumulations),
therefore being useful whenever these are neither readily available nor tractable.

Regarding symmetric distributions with the whole real line as support, it is worth not-
ing that, if we look at the Theorem 1, it is evident that we require one density to intersect
the other only once and from below, in order to dominate the later by first-order. But,
if the variance of two symmetric distributions of the same family are different then the
densities are going to intersect each other more than once and the corresponding cumula-
tive distribution functions will cross, preventing first-order dominance. Therefore, in this
context, first-order dominance requires higher mean with equal variance. It can also be
shown that second-order dominance requires the mean of the dominance distribution to
be at least as high as the other distribution’s, and its variance to be at least as low as that
of the dominated distribution.

Characterizing the whole set of parametric conditions for a much broader range of dis-
tributions could intensify the application of stochastic dominance technique. Hence our
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DISTRIBUTION

next attempt is to find out all the necessary and sufficient conditions for all the distri-
butions defined by McDonald (1984). Further extensions may include conditions for dis-
tributions with support throughout the whole real line, bivariate dominance conditions,
comparisons between two different distributions, and/or mixtures.

Finally, we have not tackled the derivation of third-order dominance conditions. While
this task is possible, we are less inclined to pursue it, as long as little attention is paid to
the concept in the applied literature.
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6 Appendix: Proofs of the dominance conditions for the log-
normal distribution
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for the other distributions are available upon request.
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6.1 First order dominance

6.1.1 Necessary conditions

As we know, first-order dominance is equivalent to EA[u(x)] ⩾ EB[u(x)] for all strictly
increasing, continuous utility functions u. Then this has to be the case for ut ≡ 1

tx
t
∀t /0,

with x ∈ R++.
We can compute the expected value of ut when it follows a log-normal distribution,

using the moment generating function:

EA[ut(x)] =
1

t
∫ xtfA(x)dx =

1

t
exp(tµ +

1

2
t2σ2

). (5)

If A ≻
1 B then it must be the case that: EA[ut(x)] > EB[ut(x)]. If t > 0 then the latter

implies:

exp(tµA +
1

2
t2σ2

A) > exp(tµB +
1

2
t2σ2

B) (6)

µA +
1

2
tσ2
A > µB +

1

2
tσ2
B (7)

µA
t
+

1

2
tσ2
A >

µB
t
+

1

2
σ2
B (8)

Now let µB > µA, and consider t to be very small such that t → 0 ⇒ tσ2
i → 0 then µi

is the deciding factor and EB[ut(x)] > EA[ut(x)] by 7. But this is a contradiction, since
we posited that EA[ut(x)] > EB[ut(x)]. Hence a necessary condition for A ≻

1 B is that:
µA > µB.

Similarly, consider σA < σB and t → ∞, then EB[ut(x)] > EA[ut] by 8. Again, this
contradicts the premise of A dominating B. Hence, we need to have σA ⩾ σB.

Next consider, t < 0. Then EA[ut(x)] > EB[ut] implies:

exp(tµA +
1

2
t2σ2

A) < exp(tµB +
1

2
t2σ2

B) (9)

µA +
1

2
tσ2
A > µB +

1

2
tσ2
B (10)

µA
t
+

1

2
tσ2
A <

µB
t
+

1

2
σ2
B (11)

By a similar argument as above we require µA > µB by 10. Now suppose σA > σB.
Then, if t → −∞, EA[ut(x)] < EB[ut(x)] by 11. This is a contradiction. Hence, we require:
σA = σB. To summarize, the necessary conditions for first-order dominance with log-normal
distributions involve both µA > µB and σA = σB.

6.1.2 Sufficient conditions

We construct the ratio z(x) ≡ fA(x)
fB(x) for the log-normal case:
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DISTRIBUTION

z(x) =
σB
σA

exp(− 1
2σ2
A

(lnx − µA)
2
)

exp(− 1
2σ2
B

(lnx − µB)
2
)

(12)

After some manipulation, and introducing the necessary condition: σA = σB = σ we are
left with:

z(x) = exp(
1

σ
(µA − µB) lnx +

1

2σ2
(µ2

B − µ
2
A)) (13)

Now, it is easy to check that limx→0 z(x) = 0 if we impose the necessary condition µA >

µB. Likewise limx→∞ z(x) = ∞ if, again, µA > µB. Finally, the derivative of z(x) is strictly
positive if and only if µA > µB, therefore z(x) = 1 only once for a value x ∈] − ∞,∞[, i.e.
there is only one density curve crossing:

∂z(x)

∂x
=

1

σx
exp(

1

2σ2
(µ2

B − µ
2
A) +

1

σ
(µA − µB) lnx)[µA − µB] (14)

In summary, µA > µB and σA = σB are together necessary and sufficient conditions for
A ≻

1 B.

6.2 Second order dominance

6.2.1 Necessary conditions

Second-order dominance is equivalent to EA[u(x)] ⩾ EB[u(x)] for all strictly increasing,
continuous, and concave utility functions u. Then this has to be the case for ut ≡ 1

tx
t
∀t < 0,

with x ∈ R++.
Using 9, 10 and 11, and proceeding by taking the limits of t toward 0 or −∞ as before,

it is easy to deduce that µA(x) > µB(x) and σA(x) ⩽ σB(x) are both necessary conditions.
However, since A ≻

2 B implies EA(x) ⩾ EB(x), then a condition ensuring the latter is
necessary (but not sufficient) for the former. Now, note that µA(x) > µB(x) and σA(x) ⩽

σB(x) do not imply EA(x) ⩾ EB(x). Therefore we need a third necessary condition based
on the means of the log-normal distributions, namely: µA +

σ2
A

2 ⩾ µB +
σ2
B

2 .

6.2.2 Sufficient conditions

We consider again z(x), but without the need to impose σA = σB:

z(x) =
σB
σA

exp{
1

2
(ln2 x)(

1

σ2
B

−
1

σ2
A

) + (lnx)(
1

σ2
A

µA −
1

σ2
B

µB) +
1

2
(

1

σ2
B

µ2
B −

1

σ2
A

µ2
A)} (15)

It is straightforward to show that, if σA ⩽ σB and µA > µB then limx→0 z(x) = limx→∞ z(x) =

0. Moreover, deriving and inspecting ∂z(x)
∂x , and ∂2z(x)

(∂x)2
it is also easy to realize that z(x)

is strictly concave and has a global maximum. Hence σA ⩽ σB and µA > µB are sufficient
conditions for second-order dominance, once we also impose the condition on the mean
alongside them: µA +

σ2
A

2 ⩾ µB +
σ2
B

2 (which is also necessary as we mentioned above).
In summary, the three necessary conditions are also sufficient for A ≻

2 B.
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