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Abstract

In an artefactual field experiment in rural India, we find that subjects form inef-

ficient networks and lose 35 percent of payoffs as a result. the game is designed so

that the efficient network can be reached if all players choose strategies consistent

with selfish rationality and with a concern for overall welfare. These strategies are

chosen frequently. However, in 20 percent of the cases, subjects target the ‘most pop-

ular’ player in the network and this causes large efficiency losses. When information

about group membership is disclosed, there are more connections between subjects

of the same group, but networks do not become significantly less efficient. Networks

play an important role in the diffusion of information and in the sharing of risk and

favours. If they are inefficiently structured, there is scope for policies that shape social

connections.
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1 Introduction

Social networks play an influential role in economic life. Individuals who share a

social connection often exchange information about technologies and opportunities

(Goyal, 2007; Conley and Udry, 2010; Banerjee et al., 2013), share risk and support

(Fafchamps and Gubert, 2007; Munshi, 2011; Ambrus et al., 2014), and help each

other set goals (Field et al., 2015; Breza and Chandrasekhar, 2015). These behaviours

have tangible economic returns and can be exploited by policy makers to increase

the impacts of social interventions (Feigenberg et al., 2013; BenYishay and Mobarak,

2015). The magnitude of these returns, however, is influenced by the structure of

the network. For example, information diffuses slowly in networks where most con-

nections occur within small groups of similar individuals (Golub and Jackson, 2012).

There is very limited evidence on whether, in practice, individuals form networks that

maximise the benefits of social interaction and on what factors may prevent network

efficiency.

In this paper, we report the results of an experiment designed to study network

efficiency. Assessing efficiency using observational data would be challenging, as the

researcher has to quantify the costs and benefits of each connection. We thus study

efficiency in a game where players sequentially create connections with each other.

The benefits of a link are proportional to the number of players that are ‘reached’

directly or indirectly through this link. Links are created unilaterally and the benefits

flow to only one of the two players, as in the model of Bala and Goyal (2000). Each

player can only form one link. In this simple game, the efficient network is a cycle

where every player is connected, directly or indirectly, to everybody else.

We find that players systematically form inefficient networks. On average, a player

is connected with only 3.2 of the 5 other players in the game and payoffs are about 35

percent lower than those in the efficient network. This is surprising because we design

the experiment so that players converge to the efficient network if they choose links

to maximise their own payoffs (in the first experimental condition) or to maximise the

payoff of others (in the second experimental condition). The efficient network is also

an equilibrium of the game and determines equal payoffs for all players.

A relatively small group of players that adopt an inefficient strategy is mostly re-

sponsible for aggregate inefficiency. This finding highlights that networks are fragile,

in the sense that small groups that deviate from efficient strategies can compromise

overall welfare. Pooling all decisions together, we find that players choose links con-

sistent with payoff maximisation about half of the times. They also often connect to

the least well-off player in the network. Lastly, in 20 percent of the cases, links target

the ‘most popular’ player – the player with the largest number of direct connections at
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that point in the game. Simulation analysis shows that this strategy is responsible for

the largest efficiency losses. The efficiency loss would be reduced to 5 percent if links

to the most popular player were re-wired according to the strategy that maximises

payoffs.

We also provide evidence on a key factor that is believed to affect network structure:

group identity. Previous research has highlighted how group categorisation generates

in-group favoritism (Tajfel, 1981; Brewer, 1999; Akerlof and Kranton, 2010) and in-

fluences behaviour in strategic environments (Yamagishi and Kiyonari, 2000; Charness

et al., 2007). Empirical studies on networks have also documented a tendency of so-

cially similar individuals to interact with each other with disproportionate frequency

(McPherson et al., 2001; Currarini et al., 2009; Golub and Jackson, 2012). To investi-

gate the role of group identity, we randomly assign players to groups at the beginning

of the experiment. We then vary whether players are informed of the group affiliation

of others during the network formation game. Restricting links to in-group partners

would result in large efficiency losses in our game.

We find that when we disclose information about group membership, individuals

form more links within their group, but the resulting networks are not less efficient.

These effects can occur simultaneously if players (i) create connections on the basis

of the network position of the partner, and (ii) whenever there are both in-group and

out-group partners with the desired network position, players prefer to connect with

an in-group partner. We present evidence consistent with this mechanism.

To enhance external validity, we run the experiment in a population that heavily

relies on social networks for the diffusion of information: farmers from the Indian

state of Maharashtra. With the many social identities based on caste, religion and class,

India also offers an ideal setting to study the effects of group membership (Beteille and

Srinivas, 1964; Guha, 2008; Hoff and Pandey, 2006). Recent evidence on information

agents in rural communities shows that social distance decreases the probability that

information is shared between individuals (Berg et al., 2013).

We contribute to the literature that studies the formation of networks (Jackson and

Wolinsky, 1996; Bala and Goyal, 2000). One strand of this literature has used dyadic

data from rural areas of developing countries to explore what factors determine the

sharing of risk, favours, information and labour (Fafchamps and Gubert, 2007; Kr-

ishnan and Sciubba, 2009; Karlan et al., 2009; Comola, 2010; Jackson et al., 2012;

Santos and Barrett, 2010; Comola and Fafchamps, 2013). These networks are often

characterised by homophily (McPherson et al., 2001; Rogers, 2003). Another strand

of the literature has studied network formation in the lab, exploring issues of inequity

aversion (Goeree et al., 2009; Van Dolder and Buskens, 2009; Falk and Kosfeld, 2012),

coordination (Berninghaus et al., 2006), and whether chosen links are myopic best re-
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sponses or far-sighted strategies (Callander and Plott, 2005; Conte et al., 2009; Kirch-

steiger et al., 2011). In a related experiment, Belot and Fafchamps (2012) compare

unilateral partnership formation decisions to dictator game allocations with equivalent

payoff consequences. All of these experiments use western subjects, typically univer-

sity students. More recently, Centola (2010, 2011); Banerjee et al. (2012) and Baner-

jee et al. (2013) use experimental techniques to investigate how the structure of the

network affects the diffusion of information and behaviour.

Falk and Kosfeld (2012) – who study a game of unilateral, one-way-flow link for-

mation based on Bala and Goyal (2000) – is the experiment most closely related to

ours. The two designs differ because of a number of features that we introduce to

limit coordination and computation problems: in our experiment links are added to

the network one at a time and players are allowed only one link, so that the only cost

of a connection is the opportunity cost of not forming another connection. Falk and

Kosfeld (2012) find that efficient networks are achieved in about half of the periods

of the game. By comparison, in the last period of our game, the efficient network is

reached in less than 10 percent of the sessions. The difference in efficiency may arise

from the fact that information networks play a larger role in the lives of the subjects in

our experiment. These subjects may hence have developed rules of thumb to deal with

complicated network formation problems. Targeting the most popular player in the

network may be an effective rule of thumb in games where the efficient network is a

star. In many games, however, star networks are not desirable (Bala and Goyal, 1998).

Our findings suggest that some subjects inefficiently use the same rule of thumb across

different games. This also highlight the importance of studying behaviour in games

across different populations.

We also contribute to a growing literature that studies the preferences and strate-

gies of subjects in non-Western countries (Henrich et al., 2010). Using both survey and

experimental data, Becker et al. (2015) and l’Haridon et al. (2016) document large

differences in social, risk and time preferences across countries. Efficiency in market

exchange also varies widely across societies (List, 2004; Bulte et al., 2012; Haushofer

and Zurlinden, 2013).

Finally, our study is related to identity economics (Akerlof and Kranton, 2000) and

a rich literature in economics and social psychology, referenced above, that studies

how group categorisation generates in-group bias and modifies behaviour.

The paper is organised as follows. Section 2 presents the design. Section 3 develops

predictions and testable hypotheses. Section 4 describes the data. Section 5 reports

the results of the analysis. Section 6 concludes.
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2 Design

2.1 The link-formation game

We play a sequential link-formation game with groups of six players.1 In this game

links are valuable because they increase players’ chances of winning a monetary prize:

one of the six players is randomly drawn at the end of the game to receive the prize

and those players who are directly or indirectly connected to the winner receive a prize

of equivalent value. The prize can be thought of as a valuable non-rival good – like

information – which can be shared among socially connected individuals. It is worth

100 Indian Rupees (5.2 USD at purchasing power parity), which is about 85 percent

of the average daily wage paid by the NREGA public work program in that area.2

At the start the game the network has no links. Players add links sequentially, over

two rounds of six turns each. We randomly assign each player to one turn per round.3

In the first round, players add a link to the network. In the second round, they rewire

their existing link if they wish.4 Links are formed unilaterally – without requiring the

consent of the other player. They are recorded on a network map which is drawn on a

white board in front of all players and is updated after every turn. A number of design

features ensure sequential updating takes place without breaking anonymity.5 We use

the whiteboard and a simple Java application to remind the player with the turn of the

total number of (direct and indirect) connections that every other player has at that

particular point in the game.6

1All experimental materials can be found here: https://sites.google.com/site/
stefanoacaria/linkformationindia.

2In 2012-2013 the National Rural Employment Guarantee Scheme paid an average daily wage to his

workers of 121 INR (http://nrega.nic.in/netnrega/home.aspx).
3Participants are informed of that the order of play is chosen randomly, but do not know the particular

order of play which has been drawn for their session.
4In both rounds players have the options not to form any link. This option is used very rarely.
5Participants record their decisions on a game sheet. Modified cardboard boxes ensure participants cannot

see what other players are choosing. However, the boxes do not prevent players to infer from a peer’s body

movements whether he is updating his game sheet or not. This threatens anonymity as it is possible to

determine which participant has the turn by simply checking who is updating his game sheet at a given point

in the game. We solve this problem in the following way. At the beginning of each turn, the game assistant

publicly calls the ID of the player who has the turn. After allowing some time to look at the updated network

map, the game assistant asks all players to make a circle on their game sheet. The player with the turn circles

the ID letter of the player to whom he would like to link, while the players without the turn draw a circle

in an empty box provided on the same page of the game sheet. As everybody writes something on their

game sheet at the same time farmers cannot infer the identity of the player with the turn by checking who is

updating his game sheet at a given point.
6 The counting of connections is done by means of a Java application running on a small laptop operated
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Figure I: Links in T1 and T2
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The benefits of a link flow only in one direction. We vary the direction of the

flow of benefits across sessions of the game. In treatment 1 sessions (henceforth T1),

players form links that let them reach other individuals. This means that if player A

links with player B, then player A will receive the monetary prize whenever B wins the

prize, but not vice versa. In the left panel of figure I this is represented with an arrow

pointing from A to B. In the network of figure I, when player A connects to player B,

he also reaches farmers C and D, and hence receives the prize if C or D win the prize

draw. Thus player A reaches three players in the network. In treatment 2 sessions

(henceforth T2), links let other players reach the player who proposes the link. If A

links with B, then B will receive the monetary prize whenever A wins it, but not vice

versa. The right panel of figure I illustrates.7

2.2 Group identity

At the beginning of the experiment we assign players to one of two groups. We then

disclose information about group membership in randomly chosen sessions of the link

formation game. This is cross-cut with T1 and T2, resulting in four experimental condi-

tions, as shown in table I. In the first two conditions, T1no and T2no, individuals have

no information about the group affiliation of the other players. In the last two con-

ditions, T1id and T2id, players’ group identity is disclosed publicly, by using different

symbols to identify players from different groups on the network map.

by the game assistant. After entering a new link, the software produces a table with the number of (direct

and indirect) connections of each player in the current network. This number is written next to the respective

player ID on the white board, immediately after the network map has been updated with a new link.
7In T2, we report on the whiteboard both the number of individuals who reach a particular player and

the number of individuals who are reached by that player.
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Table I: Summary of treatments

No identity Identity

Links take prize T1no T1id

Links give prize T2no T2id

Figure II: Order of activities in the experiment

1

Group and ID assigned

Knowledge game

2

3

Allocation task

Link-formation game

4

5

Questionnaire

We assign group membership randomly – players pick a card from an urn which

determines their group affiliation. We do not use art or sport preferences to create the

groups because these preferences may correlate with other player characteristics. To

strengthen group identity, the groups compete in a game testing agricultural knowl-

edge. Contests of this kind have been used in previous experimental studies to make

group affiliation more salient (Eckel and Grossman, 2005). In our game, players an-

swer three questions related to local weeds, pesticides, etc. If all players in a group

answer all questions correctly, the group obtains one “point”, which is added to those

accumulated by the same group in previous sessions. Every player can thus have a

strong marginal impact on the group’s outcome: if the player fails to answer one ques-

tion correctly, the whole group fails to gain the point. Players answer the agricultural

knowledge questions before the link formation game, but the results are publicly re-

vealed only after all parts of the experiment are completed. Our objective is to make

the groups salient from the start of the experiment, while ensuring that we do not

disclose information that can influence the other tasks.

We measure whether players are biased in favour of other players of the same

group in an incentivised allocation task. In this task, players have to divide 30 Rupees

between an in-group and an out-group recipient. Recipients are randomly drawn from

the participants in the following session of the experiment. This task is played right

after the questions on agricultural knowledge. We also ask a number of unincentivised

questions about norms and expectations at the end of the experiment. The order of

activities is summarised in figure II.
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2.3 Instructions

Instructions are framed in terms of the local context. The link-formation game is pre-

sented as a game where one farmer will receive a valuable piece of information about

a new agricultural technology. The network determines who receives help from the

farmer with the valuable information. In T1 the choice of a link is presented in terms

of choosing who to approach for help to get the information. In T2 the choice is about

which other player you want to help in case you get the valuable information. The

groups are called the mango and the pineapple group, an implicit reference to the

producer groups which farmers typically form in the areas of our study.

To ensure comparability and minimize noise during play, we follow a number of

established practices in the lab-in-the-field literature. These include extensive piloting,

simple standardized instructions that are read out to participants, double translation of

all written material, and reliance on physical randomization devices (Barr and Genicot,

2008; Viceisza, 2012).

2.4 Discussion

Understanding. We test players’ understanding before the game starts. We ask sub-

jects in T1no and Tid 8 questions, while we ask subjects in T2no and T2id 7 questions.

The questions test for understanding of the network map and of the incentives that

result from the rules of the game. After the questions are asked, enumerators briefly

check the answers and give further explanations to correct mistakes. Hence the an-

swers give a low bound to the level of understanding of the players in the game. Figure

XVIII in the appendix presents the cumulative distribution of mistakes. In both T1 and

T2 more than 50 percent of players made at most 1 mistake, and about 80 percent of

players made at most 2 mistakes. To further increase understanding, we run a trial

round of the link-formation game before the main game is played. We also explore the

sensitivity of our results to the level of understanding of the players in the session.

Side-payments. Personal identity is not disclosed in the game and payments are

disbursed privately. This decreases the possibility of side-payments. In particular, it

decreases the possibility that network-formation decisions will be targeted towards

individuals from whom side payments can be more easily extracted.

Wealth effects. Both the allocation task and the link-formation game are incen-

tivised with monetary payments. In the allocation task individuals choose how to split

a sum of money between two farmers in a future session of the experiment. The allo-

cation decision does not affect the wealth of the decision maker. It also does not affect

the wealth of the other farmers in his session. This rules out unintended influences

across the two tasks created by endogenous shocks to players’ wealth.
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Experimenter demand effects. These arise when subjects, in an attempt to please

the experimenter, respond to implicit cues embedded in the experimental design (Zizzo,

2010). For example, the fact that we disclose information about group identity may

suggest to players that we expect them to use this information. To minimize such

concerns, we rely on a between-subjects design. These designs are thought to be less

vulnerable to the demand effects critique (Zizzo, 2010). Furthermore, we refrain to

give knowledge about players’ experimental group identity in the trial round, to avoid

making unintended suggestions about how we expect players to use this information.

3 Predictions

Our objective is to study the efficiency of the experimental networks formed by farmers.

We hypothesise that farmers will choose their links on the basis of the structure of the

network in predictable ways. In particular, we expect that farmers in T1 will play selfish

best response, while farmers in T2 will either try to maximise the sum of the payoff

of all players in the session, or the payoff of the least well-off player. We first present

the ‘link-formation rules’ that follow from these preferences. Then, we simulate link-

formation games where individuals follow the proposed rules and study the efficiency

of the resulting networks. We show that when all farmers play selfish best response in

T1, or when they maximise the sum of all payoffs in T2, the structure of the network

converges to the cycle with high frequency within two rounds of the game.

3.1 Link-formation rules

Throughout the analysis we repeatedly use two concepts: network reach and in-reach.

We define the reach of farmer j as the number of players whom farmer j observes

directly or indirectly. The in-reach of farmer j is the number of players who directly or

indirectly observe farmer j. The expected payoff of farmer j is a linear function of his

reach in the final network. If we normalise the value of the prize to 1, the expected

payoff of farmer j is simply given by:

π j =
reach j + 1

6
(1)

Farmer j’s in-reach, on the other hand, determines the number of players who in-

directly observe the information that is observed by farmer j. It is a measure of how

far the information available to farmer j travels in the network. We present formal

notation and definitions of these concepts in the appendix.
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Following much of the existing literature, we assume myopic behaviour: a farmer

considers the network which obtains after his link is added as the final network of the

game. This rules out dynamic strategies based on threats, rewards, or signals. Recent

research shows that the strategies played in experimental network formation games

are often consistent with myopic best response (Conte et al., 2009).

In T1, a new link by player i affects his reach in the network, and hence his expected

payoff. Only one link is permitted. Before this link is formed, player i has a reach of

0. A new link to player j allows player i to reach all the farmer whom player j reaches.

Picking the partner with the highest reach maximises the reach of player i and, hence,

his expected payoff.8 The link-formation rule of a selfish player in T1 will hence be:

Rule 1. Form a link with the player with the maximum reach.

For this first rule and for all the rules that follow, we assume that in case of a

tie between two or more potential partners, farmer i randomly chooses one of these.

Furthermore, when we study whether player i’s decisions conform to any of the link-

formation rules, we exclude links to player i from the computation of the reach and

in-reach of his potential partners. This is because, from player i’s perspective, these

links are redundant: they do not allow him to observe more information in T1, or to

spread his own information further in T2.

In T2, new links to do not affect the reach of the player that forms them. A purely

selfish player would be indifferent between forming and not forming a link in this

treatment. If he forms a link, he would be indifferent about its consequences on the

welfare of other players. However, a large body of evidence in experimental economics

shows that individuals care about the payoffs of the other players in systematic, het-

erogenous ways (Charness and Rabin, 2002; Andreoni and Miller, 2002).9 Following

the literature on other-regarding preferences, we assume that players have a utility

function that weights concerns for the player’s own payoff and the payoff of all other

players:

8In the appendix we show this formally.
9Notice that player i’s strategy in T1 also has an impact on the payoffs of the individuals who have a path

towards i in g. In future work, we will extend this section to include an the analysis of how other-regarding

preferences affect behaviour in T1.
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ui = πi + γ f (π−i) (2)

where we assume that there are n individuals in the set of all players N, and π−i =

{πi ,π2, ..,πi−1,πi+1, ...,πn}. To advance further we have to make some assumptions

about the shape of function f. We can explore two archetypal candidates. The first is:

ui = πi + γ
∑

j∈N\i

π j (3)

Utility function 3 expresses a concern for aggregate welfare. Charness and Rabin

(2002) argue this is the model of social preferences with the highest predictive power

for dictator game allocations. When a farmer forms a new link with player j in T2, he

increases the reach of player j and of all the players who observe player j. Intuitively,

the effect on aggregate welfare of a new link is proportional to the number of individ-

uals who observe player j. This is player j’s in-reach. In T2, the link that maximises

the sum of individual payoffs should thus be a link with the player with the maximum

in-reach.10 We predict that a fraction of players in T2 have other-regarding preferences

expressed by 3 and will thus play according to the following link-formation rule:

Rule 2. Form a link with the player with the maximum in-reach.

A second possibility is that players care about the welfare of the player who is least

well-off in the network. The literature in empirical social choice has documented this

type of concern (Yaari and Bar-Hillel, 1984), which we can express using the following

max-min utility function:

ui = πi + γ min
j∈N\i

π j (4)

Utility function 4 is akin to the Rawlsian social welfare function which is a staple of

social choice theory. The function is maximised by choosing the player with the lowest

reach, which is the e player with the lowest expected payoff. We predict that a fraction

of players in T2 have other-regarding preferences expressed by 4 and will thus play

according to the following link formation rule:

10In the appendix we show this formally and explain one qualification that applies to links that create a

small cycle.
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Rule 3. Form a link with the player with the minimum reach.

Notice that, depending on the structure of the network, the sets of players who

satisfy rules 2 and 3 can be disjoint or overlapping. Figure XIV in the appendix shows

an example where the two sets are disjoint: F has the minimum reach while A,B,C, and

D all have the maximum in-reach.

A third model of social preferences is that of inequality aversion (Fehr and Schmidt,

1999). Under inequity aversion, a player feels guilt towards players with a lower

expected payoff and envy towards players with a higher expected payoff. An inequity

averse player in the first turn of a T2 session prefers not to form any link, as this would

cause him to feel envy towards the player who benefits from the link. This prediction

is virtually always falsified in our pilot and main data. We thus do not explore the

predictions of the model of inequity aversion any further.

On the basis of the discussion above, we make the following prediction regarding

individual decisions.

Prediction 1. In T1 players will form links to partners with the maximum reach. In T2

players will form links either with partners with the maximum in-reach or with partners

with the minimum reach.

For ease of exposition we will sometimes refer to rule 1 and rule 2 as the ‘efficiency-

minded rules’, as both of these rules follow from a desire to maximise payoff (either

one’s own, or that of the rest of the group). We will also refer to rule 3 as the ‘Rawlsian

rule’, as it reflects the max-min logic of the Rawlsian social welfare function.

3.2 Network efficiency

We measure welfare as the sum of individual expected payoffs. The cycle network,

where each player wins the prize for sure, maximises this sum and is the unique effi-

cient network structure in our game. To compare the cycle network to other networks,

we define a continuous measure of efficiency by taking the ratio between the average

reach of players in a network and average reach of players in the cycle.

11



Efficiencyg =
1
n

∑n
i=1 reachi

5
(5)

The cycle network has efficiency 1 under this measure. All other possible networks

have a level of efficiency that falls in the interval [0,1). Our definition of efficiency

rises monotonically with the sum of the expected payoffs in a network.

We simulate link-formation games where players follow the link-formation rules

outlined above and we study the overall efficiency of the resulting networks. Our first

set of simulations shows that when all players follow rule 1 in T1 average efficiency is

about 96 percent. Figure III gives an example of how play in accordance with rule 1

achieves the cycle network within 2 rounds. Once the cycle network is reached, under

rule 1 no player wants to rewire his link.

In a very small number of cases the process does not converge to the cycle. This is

because players randomise between candidates of equal value, without consideration

to the future order of play. This sometimes results in a situation where the player who

can form the cycle network by re-wiring his link has already played his second turn.

If we allow more rounds, the likelihood of this occurring in every round becomes very

small. For example, in three rounds rule 1 achieves 99 percent efficiency.

Our second set of simulations shows that when all players play according to rule 2

in T2 average efficiency is also about 96 percent.11 When all players in T2 play accord-

ing to rule 3, on the other hand, network efficiency is 67 percent. Figure IV reports

kernel density estimates and average efficiency for simulated sessions where play is in

accordance, respectively, with rule 2, rule 3, and with a random link formation process.

The random link formation process achieves average efficiency of about 52 percent.

We also study efficiency in sessions where a mix of rules is played. We simulate

sessions where a fraction p of decisions follow rule 3, and a fraction 1-p of decisions

follow rule 2. Results show that efficiency decreases monotonically with p in the in-

terval between 96 and 67 percent. Figure XV shows this graphically. We can thus

formulate the following prediction on session level efficiency.

11 This is not surprising, as rule 2 generates link formation processes that are symmetrical with the respect

to rule 1 in T1.
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Figure III: Network evolution under rule 1 in T1
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(i) Turn 11: The cycle!

For ease of presentation, the order of play is assumed to be the order of the alphabet. All players in this

simulation play according rule 1. Turns 7-11 are in the second round, where players rewire their existing

link. Turns 8-10 are omitted because no rewiring takes place.
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Figure IV: Average efficiency under different link-formation rules in T2

(a) Random (b) Rule 2: Maximum in-reach

(c) Rule 3: Minimum reach

Each panel reports kernel density estimates of the distribution of the average value of reach after 12 turns of

play for 500 simulated sessions. The vertical line indicates average efficiency achieved by a given rule. The

rule used in each set of simulations is indicated below the panel.
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Prediction 2. Network efficiency in T1no is close to 96 percent. In T2no, it is between 96

and 67 percent.

Figure XVI in the appendix shows the evolution of efficiency under the different

link formation rules. In the second round, efficiency has no trend when all players play

random or rule 3. However, when players play rule 2, average efficiency monotonically

increases every turn.

3.3 The effect of group identity

In order to make predictions about behaviour when group identity is disclosed, we

follow the seminal paper of Akerlof and Kranton (2000) and introduce a positive effect

on utility which comes from following a social prescription:

ui = πi + γ f (π−i) + Pi (6)

Pi is equal to a positive constant c if player i follows the social prescription. In

our game, for example, farmers may get positive utility whenever they use their link

to connect with an in-group partner. This may describe the satisfaction arising from

following a norm which states that links should be restricted to in-group partners.

Whenever an in-group link generates an additional positive effect on utility of c we say

that the individual is subject to a norm of homophily. Self-reports from our players

are consistent with the existence of such norm. In a questionnaire administered after

the game, 51 percent of players agree with the statement: ‘In a game like this, one

should only link to a player of his own group’. Furthermore, about 70 percent of

players expect at least 3 of the other 5 individuals in the session to agree with the

statement.

What will be the effect of disclosing group identity in our game? Suppose farmer

i follows rule 2 in T2. For any positive value of c, whenever there are both in-group

and out-group players who have maximum in-reach, farmer i will form a link with one

of the in-group players. Before disclosure of group identity, he would have randomly

chosen among the players with maximum in-reach. After disclosure, he can target his

link to an in-group partner. The frequency of in-group links increases.
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Now consider the case where there are no in-group players with maximum in-reach.

If c is small, the positive utility from following the social norm will not compensate the

loss in utility from failing to maximise the social objective. In this case, farmer i will

act in the same way as he would have when group identity was not disclosed: he will

form a link with an out-group player.

If c is high, on the other hand, the in-group player with highest reach within the set

of in-group players may be preferred to the player with the highest in-reach overall. In

this case, after disclosure of group identity, farmer i will sometimes choose links that

have a weaker effect on aggregate welfare. The efficiency of the network decreases.

The higher c, the larger the difference in in-reach a farmer is prepared to tolerate

in order to conform to the social norm. In a set of simulations reported in figure XVII

in the appendix, we show that when individuals play rule 2 and tolerate a difference

in in-reach of 2 units, average network efficiency is 53 percent. When players play rule

3 and tolerate a difference in reach of 2 units, average efficiency is about 40 percent.12

These considerations motivate a final prediction:

Prediction 3. Disclosure of group identity generates networks characterised by (i) more

in-group links and, depending on the magnitude of c, (ii) lower efficiency.

3.4 Analysis

We analyse treatment effects using non-parametric two-sided Wilcoxon rank sum tests

over session-level outcomes. We focus in particular on efficiency and the number of

ingroup links in the final network. The Wilcoxon rank sum test is a test of the null that

the outcomes of the two treatments are drawn from same distribution. The alternative

hypothesis is that either outcome is stochastically greater13 than the other.

12As a limit case, suppose farmers in T1 would never link to an out-group peer. If the play rule 1 among

in-group partners, the network will converge to two small cycles with 3 players each. The average reach for

this network structure is 2, corresponding to 40 percent efficiency.
13For two populations A and B, A is stochastically greater than B if Pr(a > b) > 1

2
, where a and b are

observations from population A and B, respectively. The two-sided Wilcoxon rank sum test sets the null of

Pr(a > b) = 1
2

against the alternative hypothesis that Pr(a > b) 6= 1
2
. The two-sided test is more conservative

than the one-sided test.
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Further, we study individual decisions with dyadic regression analysis. In particular,

we use models of the following form:

linki j,r = α+Network Position j,rβ +Di jγ+δroundr + ei j,r (7)

The unit of observation is all i-j dyads in each session s. We observe each dyad

once for each of the two rounds r. linki j,r is a dummy which takes value 1 if player i

has chosen to establish a link with player j in round r. The matrix ‘Network Position’

contains variables which describe the network position of player j before player i’s

decision in round r. For each treatment, these include the variables specified in the

link formation rules we propose above. For T2, these include a dummy for having

the minimum reach, and a dummy for having the maximum in-reach. For T1, they

include a dummy for having the maximum reach. As a check, in T1, we also include

a dummy for having the minimum value of in-reach. For robustness, we will also run

specifications where we include the actual values of reach and in-reach.

To control for correlations between our variable of interests and the fixed positions

of the players in the network map, we introduce a dummy variable for each possible

pairing of map positions.14 The matrix Di j contains these variables. Furthermore, we

control for round specific effects.

Model (7) will be estimated using OLS, correcting standard errors for arbitrary cor-

relation at the session level. We can plausibly assume that there is no correlation be-

tween errors terms involving individuals in different sessions of the experiment. How-

ever, as explained, individuals are only allowed one link. This generates a correlation

between error terms involving similar individuals within a session. For example, since

a link to j precludes a link to k, E[ei j,r eik,r] 6= 0. This inference problem is typical in

dyadic regression analysis (Fafchamps and Gubert, 2007). We correct for intra-session

14For example, see figure III. From the perspective of player A, while B’s position in the network is evolving,

B remains A’s closest neighbour in the visual representation of the set of players. This may make player A

more likely to choose B than more distant players when A makes mistakes. To reach the cycle network,

Player A may also choose an immediate neighbour as part of a coordination strategy which relies on physical

proximity. A similar possibility is explored in Callander and Plott (2005). Alternatively, some positions in

the map, for example A’s position, may be visually more salient. If the position in the map is correlated with

the network position of the player, regression analysis would suffer from omitted variable bias. We hence

include position dummies for all possible directed dyads (AB, AC, .. , BA, BC, ..) to ensure that the effect of

network position which we study in regression 7 is not confounded by correlations with the initial position

in the network map.
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correlation in error terms using cluster-robust standard errors for inference.

Previous studies have shown that when the number of independent groups of ob-

servations is low, the cluster correction delivers downwardly biased standard errors

(Cameron et al., 2008). Thus, when we run regressions with less than 40 clusters, we

apply the wild bootstrap correction to p-values proposed by Cameron et al. (2008).

4 Data

We run the experiment in the Indian state of Maharashtra. We randomly sample from a

census list of all villages in 4 ‘talukas’ (sub-districts) of the Pune and Satara districts.15

Villages in these sub-dstricts are situated approximately 1,30 to 3h hours away from

Pune. This is a similar distance to the district capital as that of the villages selected in

the study of Banerjee et al. (2013). To reflect the large heterogoeneity in geographic

conditions in this area of India, we choose two subdistricts which mostly comprise

mountainous areas, and two subdistricts in the agricultural plains.

We select study participants through door-to-door random sampling. On alternat-

ing days, we start sampling from the periphery of the village or from the center of the

village.16 We invite all male adult farmers who are encountered in the door-to-door

visit until we have enough farmers to fill in all planned sessions.

Data collection took place between September and October 2013. In total, we run

81 sessions with 486 subjects. We run 20 sessions of T1no, T1id and T2id, and 21

sessions of T2no. In three of the sessions one participant left before the beginning of

the link formation stage. This leaves us with 483 subjects, and corresponding dyadic

dataset with 4,800 dyads.17 Table II summarises the number of observations we have

for each treatment.

At the end of the game, participants compile a short questionnaire. We hence

have a small set of covariates.Average age is 43 years. 95 percent of participants are

Hindu, 72 percent do not belong to a scheduled caste, tribe or an other backward caste

(OBC), 28 percent of them have completed high school. We also find that average total

land holdings are about 4 hectares and average land cultivated is 3.6 hectares. On

15We exclude from the sampling large towns on the main highway of the district.
16We identity the centre by asking village dwellers. This is typically a small square in front of the village

temple.
17We create the dyadic dataset in the following way. For a player i in round r we create an observation

for each possible player j to which player i can connect. We then stack these observations across players and

turns. As a result, when a session has six individuals, we have five dyads per turn for each player. When a

session has 5 individuals, we have four dyads per turn for each player.
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Table II: Number of observations by treatment

Treatment Sessions Players Dyads

T1no 20 120 1200

T1id 20 119 1180

T2no 21 126 1260

T2id 20 118 1160

Total 81 483 4800

average, farmers report regularly sharing information about agriculture with 11 other

farmers.18

Table III: Summary statistics: individual covariates

Variable Obs Mean Std. Dev. Min Max

Age 479 43.41 12.96 22 85

Hindu 457 .95 .22 0 1

Non backward caste 433 .72 .45 0 1

Completed High School 466 .28 .45 0 1

Land Owned 475 4.07 4.67 .1 50

Land Cultivated 470 3.6 4.18 .1 45

Information network size 428 10.9 8.94 1 60

From session 9 onwards,19 we ask each farmers whether he knows each of the other

5 participants and on how many days of the last months he has had a conversation with

them. The density of the within-session networks we record is very high: 87 percent

of participants know every other farmer in their session. On average, farmers speak on

13.5 days in a month with each of the participant they know.

In tables VI to IX in the appendix, we present a set of regressions that test whether

covariates are balanced across treatments. We cannot find any statistically significant

imbalance.
18When participants fail to answer a question or report an illegible script, we code a missing value. This

explains the changing number of observations in table III.
19This means that we ask this question to 438 individuals in 73 sessions

19



Table IV: Summary statistics: session networks

Variable Obs Mean Std. Dev. Min Max

How may other players do you know? 438 4.78 .76 0 5

Average days spoken with known players 430 13.44 9.56 0 30
Degree refers to the reported number of other participants that a player knows. For each known farmer j, we ask farmer i on how many

days of the last month he has spoken to farmer j. We compute the average of this variable across all farmers j for each farmer i. In the

second row of the table, we average this variable over all farmers i. 8 farmers do not know anybody in the network, so we do not

compute this variable for them.

5 Results

5.1 Network efficiency

We first investigate overall efficiency. Table X summarises treatment-level averages of

player reach and the related measure of efficiency for the final network of the game.

We pool all sessions with no knowledge of group identity together and compare the

distribution of average session efficiency to two simulated benchmarks: the distribu-

tion of average session efficiency which would obtain if individuals chose their links

at random, and the distribution under ‘efficiency-minded’ link formation (rule 1 in T1,

rule 2 in T2). We obtain the following result, which is represented graphically in figure

V below:

Result 1. Network efficiency in T1no and T2no is lower (higher) than average efficiency

under ‘efficiency-minded’ link-formation (random link-formation) by a significant 31 per-

centage points (13 percentage points).

The efficiency of the experimental networks is 31 percentage points below the

average level achieved by the ‘efficiency-minded’ link-formation rules. A Wilcoxon

rank-sum the tests confirms that the difference between the distribution of network

efficiency in our data and the simulated distribution is statistically significant at the

1 percent level (Z = 12.08, p <.001). On the other hand, the efficiency of the ex-

perimental networks is higher by a significant 13 percentage points than the average

efficiency which random play would have achieved (Z = 4.62, p <.001).

The direction of the flow of benefits associated with the links does not affect av-

erage efficiency. Hence the result above is not driven a by lower efficiency in the T2

treatment. Average efficiency across the T1no and T2no treatments is in fact very sim-

ilar. A Wilcoxon rank sum test cannot reject the null that the outcomes of the two

treatments are drawn from the same distribution (Z = -.11, p = .91). Figure VI below

presents this result graphically. We predicted that efficiency in T2 would vary in the

range between 57 and 96 percent, and that efficiency in T1 would be 96 percent. The
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Figure V: Efficiency in no-identity sessions and in random networks

(a) Histogram (b) Kernel density estimate and means

prediction for T1 is clearly rejected.

Result 2. Efficiency in T2no sessions is not significantly different from efficiency in T1no

sessions.

Low efficiency is not an artefact of truncation at 12 turns: efficiency has no mono-

tonic updward trend in either T1no or T2no, and efficiency at turn 12 is only a few

percentage points higher than it was at turn 6. Figure VII illustrates. Falk and Kosfeld

(2012), on the other hand, document strong learning dynamics and positive efficiency

trends in their experiment.

Figure VII: Time series of effciency in T1no and T2no, turns 6-12
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Figure VI: Efficiency in T1no and T2no sessions

(a) Histogram (b) Kernel density estimate and means

5.2 Individual decisions

Efficiency is lower than what any of the rules we specified would have achieved. Fur-

ther, it is not different across the two treatments. How do these results come about? We

can answer this question estimating dyadic regression model 7. Results are reported

in table V.

As hypothesised, we find that in T1no ties are directed towards players with the

maximum reach. In T2no, on the other hand, ties are directed towards players with

the maximum in-reach and the minimum reach. The effects are highly statistically

significant and of a meaningful magnitude. In T1no, player i is 13 percentage points

more likely to choose a player with the maximum reach. This amounts to a 40 percent

increase over the probability of choosing a player who does not have the maximum

reach. In T2no, player i is 11 percentage points more likely to choose a player with

maximum in-reach and 7 percentage points more likely to pick a player with minimum

reach. A Wald test cannot reject the equality of these two coefficients.

We confirm the robustness of these results by running a specification that substi-

tutes the dummies with the values of reach and in-reach. This allows players to make

mistakes, while requiring larger mistakes to be less likely than smaller mistakes. Table

XII reports the estimates. Results are significant and of a larger magnitude. In T1no,

for example, player i is 22 percentage points more likely to choose a player with a

reach of 4 than a player with a reach of 0. Given that a player with 0 reach has a

probability of being chosen of 27.1 percent, this amounts to an increase by 81 percent.

We summarise this analysis in the following result, which supports prediction 1:

Result 3. In T1no, links to farmers who have the maximum reach in the network are
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Table V: Dyadic linear probability model (7)

(1) (2) (3) (4)

Panel a

max reach j .132 .130
(.001)∗∗∗ (.001)∗∗∗

min in-reach j .018 .016
(.461) (.627)

max in-reach j .111 .120
(.006)∗∗∗ (.002)∗∗∗

min reach j .073 .066
(.078)∗ (.142)

Const. .323 .367 .192 .218
(.002)∗∗∗ (.002)∗∗∗ (.002)∗∗∗ (.028)∗∗

Panel b

max reach j = min in-reach j 10.34 10.81
(.004)∗∗∗ (.004)∗∗∗

max in-reach j = min reach j 0.57 1.12
(.459) (.304)

Obs. 1200 910 1260 940

Sample T1no T1no T2no T2no

Cluster N 20 20 21 21

Controls 4 4

Dyadic OLS regression. Dependent variable is a dummy which takes a value of one if i chose to establish a link with j. Each regression

contains controls for the round and for each possible pairing of map positions. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.

Regressions in columns 2 and 4 include controls for age, land owned, land cultivated, number of contacts in real information networks,

number of mistakes in the initial understanding questions and dummies for having completed secondary education, for being Hindu,

and for not belonging to a backward caste. Standard errors are corrected for clustering at session level. P-values obtained with wild

bootstrap-t procedure reported in parentheses. Panel b reports the F statistics (and p value in parenthesis) for a Wald test of the

equality of coefficients.

significantly more likely to be formed than other links. In T2no, links to farmers who

have the maximum in-reach and to farmers who have the minimum reach are significantly

more likely to be formed than other links.

Table XII shows a further significant effect: in T1no player i is more likely to es-

tablish a link with a player with a lower in-reach. A caveat is in order, as, in the

previous specification, when we include a dummy for whether an individual has the

minimum in-reach we report a positive, but small and insignificant coefficient. This

suggests that the effect of in-reach in T1 is probably not substantial. This result is also

difficult to explain within our theoretical framework. One possibility is that links carry

social value for the person receiving the link proposal. Individuals who choose peers

with a low in-reach in T1no could thus be targeting the players who have accumulated

the minimum social value in the game so far. We cannot provide a direct test for this

interpretation.20 We have however some qualitative evidence in support of it. In the

20Furthermore, strictly speaking, this motive would lead to a rule targeting the player with the minimum

in-degree, unless indirect connections also carry social value.
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post-play questionnaire farmers are asked the following question: "Do you think that

choosing a farmer from your own group is a way of showing respect to him?". 51 per-

cent of farmers answer yes to this question. This is consistent with the view that links

carry social value, but represents by no means a full-fledged test.

We define an additional link-formation rule to describe this behaviour:

Rule 4. Form a link with the player with the minimum in-reach.

From now on, we will refer to rule 3 and rule 4 jointly as the ‘Rawlsian’ rules

While result 3 is in line with prediction 1, not all decisions are consistent with

the archetypal rules we have proposed. This becomes apparent when we look at the

relative frequency of decisions consistent with the various rules. In T1no, 51 percent

of decisions are consistent with rule 1 and 63 percent with rule 4. In T2no, 56 percent

of decisions are consistent with rule 2 and 68 percent with rule 3.

This exercise, however, poses two problems. First, there are often multiple individu-

als who satisfy a particular rule. Hence, rules satisfied by a larger number of candidates

are selected more frequently when individuals choose randomly or make random mis-

takes. This makes it difficult to interpret frequencies and to compare different rules.

To address this, we calculate the probability of observing a decision consistent with a

particular rule when farmers choose links at random. We then calculate a confidence

interval around the frequency with which we observe decisions consistent with the

same rule in the data. Finally, we check whether the probability of choosing such rule

under random play lies below the confidence interval. If so, we are observing a rule

being chosen significantly more often than under random play.

Second, the sets of individuals satisfying different rules often overlap. In a line

network, for example, the first individual has both the maximum reach and the mini-

mum in-reach. The last individual, on the other hand, has the maximum in-reach and

minimum reach. This complicates comparison across rules. To study the extent of the

problem we investigate the frequency of overlaps. For each turn, we check whether the

sets of potential partners who satisfy the ‘efficiency-minded’ and ‘Rawlsian’ rules are

disjoint, partially overlapping, or fully overlapping.21 Results are presented in panel

21Consider turn t when farmer i has to play. Let BR1
t , BR2

t , BR3
t and BR4

t be the sets of players who, from

the point of view of farmer i, satisfy link-formation rules 1,2,3 and 4, respectively. For T1, we focus on BR1
t

and BR4
t and define three mutually exclusive cases:
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Figure VIII: Relative frequency of decisions consistent with the hypothesised rules

(a) T1no (b) T2no

(a) of figure XX in the appendix. Overlaps are very frequent. We will hence repeat the

analysis for the sample turns where the best response sets are not fully overlapping.

Figure VIII presents the analysis for the whole sample. In T1no, both decisions

consistent with rule 1 and decisions consistent with rule 4 are observed significantly

more often than under random play. While decisions consistent with rule 4 are more

frequent, they also have a higher probability of occurring under random play. In T2no,

rules 2 and 3 are also observed significantly more often than under random play. These

results are basically unaffected if we restrict the analysis to turns where the ‘efficiency-

minded’ and ‘Rawlsian’ best response sets are not fully overlapping. As a further ro-

bustness check, we also consider the two decisions taken by each player jointly and

find that pairs of decisions consistent with a single archetypal rule occur more often

than under random play. Figures XXII and XXIII in the appendix illustrate.

The frequency of ‘efficiency-minded’ and ‘Rawlsian’ links is similar in the T1no and

T2no treatments. This explains why these two treatments have close levels of network

efficiency. In both T1no and T2no, about 70 percent of decisions are consistent at

least one of the archetypal rules. Panel (b) of figure XX shows this. The majority of

these decisions are consistent with both rules, while about 16 percent of links in both

1. Fully overlapping: BR1
t ∩ BR4

t = BR1
t = BR4

t .

2. Disjoint: BR1
t ∩ BR4

t = ;.

3. Partially overlapping: not disjoint and not fully overlapping.

For T2, we focus on BR2
t and BR3

t and similarly define the three cases.
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treatments satisfy only the ‘Rawlsian’ rule.

What about the remaining 30 percent of links that are not consistent with either

rule? We explore two possible additional link-formation rules:

Rule 5. Choose a link to the player who has been chosen by most other players in the

current network22

Rule 6. Choose a link to the player who has chosen you in a previous round 23

Regression analysis reported in table XIII in the appendix suggests that, in general,

rules 5 and 6 do not significantly predict link-formation decisions. Nevertheless, links

consistent with rule 5 are observed frequently: 66 percent of decisions that do not

follow the ‘efficiency-minded’ or the ‘Rawlsian’ rule target the ‘most popular’ player

in the network instead. Reciprocal links are not as common: they occur only in 18

percent of decisions that not consistent with the archetypal rules. Figures XXI and ??

illustrate.

Simulation analysis shows that the largest efficiency gains can be achieved by re-

ducing the proportion of links that are targeted to the ‘most popular’ player, as opposed

to reducing the proportion of ‘Rawlsian’ links. We simulate a link formation process

where 54 percent of decisions are consistent with rule 1, 16 percent with the rule 4

and the remaining 30 percent with the ‘most popular’ player rule.24 We then switch

increasing proportions of decisions assigned to follow rule 4 to rule 1, keeping the

proportion of rule 5 decisions fixed. We repeat the same exercise for rule 5: we switch

increasing proportions of decisions assigned to follow rule 5 to rule 1, keeping the pro-

portion of rule 4 decisions fixed. The results are stark: switching all rule 5 decisions to

the rule 1 delivers an efficiency gain of 25 percentage points, while an equivalent re-

duction of ‘Rawlsian’ decisions results only in a 5 percentage points increase.25 Figure

IX illustrates. In figure XXIV in the appendix we present the same simulation, with a

different assumption about the baseline proportion of decisions following the various

rules. Qualitatively, results are not affected.

22We refer to this player as the ‘most popular’ player. In T1, this corresponds to the player with the

maximum in-degree. This is the player that is directly observed by the highest number of farmers. In T2 to the

player with the maximum degree. This is the player that is directly observing the highest number of farmers.

Past links that have been rewired are not included in the computations.
23We refer to this as the ‘reciprocal’ link-formation rule.
24This reflects the decisions in our data, with two simplifying assumptions: (i) all decisions that are con-

sistent with both rule 1 and rule 4 are assumed to follow the rule 1, (ii) all decisions that are not consistent

with the archetypal rules are assumed to follow rule 5.
25We also know from the simulations reported in figure XV what would happen if switch all rule 5 decisions

to rule 3. This thought experiment corresponds to a simulation where 46 percent of decisions follow rule 3

and 54 percent follow rule 1. Figure XV shows that network efficiency in such scenario would be above 90

percent, which corresponds to 20 percentage points gain.
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Figure IX: Efficiency simulations

Note. In the baseline simulation 54 percent of decisions follow rule 1, 16 percent follow rule 4, and 30

percent follow rule 5. Each point in the graph represents average efficiency over 100 repetitions of the link

formation game.

5.3 Group identity

We next turn to the the effect of group identity. We start by showing two pieces of

evidence which suggest that our group assignment procedure creates salient groups

and that subjects believe that a norm prescribing restriction of links to the in-group

applies to our link formation game.

Figure XXV in the appendix shows results from the initial allocation task where a

player has to divide a sum of money between an in-group and an out-group partner

in the following session. The modal allocation in this task is skewed towards the in-

group partner. Overall 54 percent of individuals show such in-group bias, while 30

percent choose equal allocations. This shows that the saliency of our experimental

groups is sufficient to modify individuals’ allocations. Second, we investigate whether

individuals perceive that a norm of homophily applies to behaviour in our game. In

all treatments, we ask participants at the end of the game whether they think that a

player in this game ‘should’ only link to in-group peers.26 57 percent of players answer

yes to this question. Furthermore, about 70 percent of players expect at least 3 of the

other players (the majority) to answer year. Table XI and figure XXVI document this.

Somewhat in contrast to this, only 38 percent of players expect the last player of the

game to choose an in-group link.

Our main result on the identity treatments is the following:

26Players in T1no and T2no also answer this question, albeit information about group affiliations was not

disclosed in these treatments during the link formation game.
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Result 4. In treatments where group identity is disclosed in-group links occur more fre-

quently than in treatment with no knowledge of group identity, while network efficiency

does not decrease.

This result confirms the first part of prediction 3. First, in-group links increase.

Figure X shows a histogram of the number of in-group links in the final network for

sessions where group identity is disclosed and session where it is not. The distribu-

tion clearly shifts to the right. A Wilcoxon rank-sum test confirms this difference is

significant at the 5 percent level (Z= 2.23, p= .02).

Figure X: In-group links in identity and no-identity treatments

Note: Only links in the final network are considered. ‘No identity’ sessions include T1no and

T2no. ‘Identity sessions’ include T1id and T2id.

Second, we cannot detect a systematic effect of disclosing players’ group identity on

session level efficiency. Mean efficiency decreases to 58 percent in T1 and essentially

stays put in T2. A Wilcoxon rank-sum test cannot reject the equality of the distributions

(Z= -0.51, p= .61). This is documented graphically in figure XI.

In order to investigate how disclosure of group identity affects link formation, we

run linear probability models of the following form:

xdis = α+ β1Identity Sessions + edis (8)

xdis = α+ β1Identity Sessions + β2zis + β3
�

zis ∗ Identity Sessions
�

+ edis (9)

xdis is an indicator variable which takes the value of 1 if decision d by player i in

session s has a certain characteristic. We perform the analysis with three definitions
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Figure XI: Efficiency in identity and no-identity sessions

(a) Histogram (b) Kernel density estimate and means

of xdis: whether decision d is a link towards an in-group player, whether decision d

is consistent with the ‘efficiency-minded’ rule, and whether decision d is consistent

with the ‘Rawlsian’ rule.27 In model 9, we also study whether the effect of being in

an identity sections is stronger for certain types of players, for example, players who

have allocated more to the in-group partner in the initial allocation task. Standard

errors are clustered at the session level. Figure XII shows graphically the coefficient

estimates, while full regression tables are available in the appendix.

In-group links increase in both treatments. However, the effect is significant only

for T1. In this condition, links to an in-group player are about 11 percentage points

more likely once player group identity is disclosed. This corresponds to a 40 percent

increase in the probability of an in-group link. For T2 treatments the effect drops to 5

percentage points and is not significant.

The frequency of ‘efficiency-minded’ or ‘Rawlsian’ links is unaffected by the dis-

closure of group identity in T1. In section 3, we argued that a farmer who derives

a limited, but positive benefit from following the social norm may not be prepared

to sacrifice his objective in order to conform to the norm. However, when there are

both in-group and out-group partners who satisfy his preferred link-formation rule, he

will strictly prefer a link to an in-group partner. In this scenario, disclosure of group

identity will be associated to: (i) an increase in in-group links, (ii) no change in the

relative frequency of ‘efficiency-minded’ and ‘Rawlsian’ links, and (iii) an increase in

the proportion of, say, ‘efficiency-minded’ links that are directed towards an in-group

27As explained above, the ‘efficiency-minded’ rules are rule 1 for T1 and rule 2 for T2. The ‘Rawlsian’ rules

are rule 4 for T1, and rule 3 for T2.
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Figure XII: Linear probability model (8): coefficient estimates

(a) x is=: in-group link (b) x is= efficiency-minded link

(c) x is= Rawlsian link (d) x is= in-group link, restricted sample.

Note. Coefficients estimates from linear probability model 8. The dependent variable is indicated below

each graph. The regression in graph (d) is run over a sample restricted to include only ‘efficiency-minded’

links. Standard error are clustered at session level. Full regression results are reported in tables XIV, XV,

XVI, and XVII.

partner. We have already presented evidence consistent with effects (i) and (ii). We

test for effect (iii) by restricting the sample to ‘efficiency-minded’ decisions in T1 and

T2 and running again model 8, with the in-group link dummy as dependent variable.

The significant coefficient of 13.8 which we obtain for T1 can be interpreted as the

percentage point increase in the probability that an ‘efficiency-minded’ link is directed

to an in-group farmer.

Decisions consistent with the two archetypal rules are, on the other hand, observed

less frequently in T2. Links towards players with maximum in-reach drop by 9 per-

centage points (a 17 percent fall with respect to the baseline probability of such links

in T2no). The effect is however only significant at the 15 percent level. Links towards

players with minimum reach also decrease by an insignificant 4 percentage points.

These results suggest that disclosure of group identity may operate through differ-

ent mechanisms in the two treatments. We are unable to shed more light on these
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mechanisms through estimation of model 9: the effect of group identity disclosure on

the likelihood of choosing an in-group link is not stronger for individuals who show

in-group bias in the allocation task, who agree with the norm of homophily, or who

expect more peers to agree with the norm of homophily.28

5.4 Additional tests

In this section, we show that the likelihood of choosing a link consistent with any of the

rules we have discussed is generally not correlated with the number of correct answers

players give in the initial understanding questions. We show this using the following

regression model:

xdis =α+ β1Identity Sessions

+ β2
�

understandingis ∗ Identity Session=0s
�

+ β3
�

understandingis ∗ Identity Session=1s
�

+ edis (10)

understandingis is the z-score of the number of correct answers players give in the

initial understanding questions. β2 captures whether high understanding subjects are

more likely to choose links consistent with strategy x in sessions where group identity

is not disclosed. β3 measures whether high understanding subjects are more likely to

choose links consistent with strategy x in sessions where group identity is disclosed.

Tables XX and reports results of separate estimations of model 10 for T1 and T2. The

only significant result is that in sessions where group identity is disclosed, players

with a higher understanding z-score are less likely to link to the player who has been

chosen most frequently. The coefficient is only significant at the 10 percent level and

small in magnitude: a standard deviation increase in understanding is associated with

a decrease in the likelihood of a link towards the ‘most popular’ player of 4 percentage

point, corresponding to 10 percent reduction in this probability.

6 Conclusion

Social networks play an important role in the diffusion of innovations such as new

agricultural technologies, health schemes or financial products. Theoretical models

show that in games of unilateral, one way flow link formation, myopic, selfish indi-

viduals can converge to efficient networks after repeated play (Bala and Goyal, 2000).

28In future work, we plan to attempt estimation of a structural mixture model of link selection, which

allows for different link formation objectives in the population.
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We offer the first experimental test of this prediction for a non-western population- a

sample of farming communities in rural India. This is a policy-relevant setting: interest

for new, cost-effective intervention designs that promote the diffusion of agricultural

technology is currently high in India. We make a second contribution to the literature

by exploring how a pervasive feature of the social world, group categorisation, affects

the way networks are formed.

We find that the efficiency of the networks formed in our experiment is signifi-

cantly and substantially lower than the level of efficiency which myopic selfish play

would have achieved. While many farmers choose welfare-enhancing links, large effi-

ciency losses come about because a minority group of farmers chooses to link with the

‘most popular’ farmer in the network. When information about group membership is

disclosed, more in-group links are formed, but networks do not become significantly

less efficient.

Inefficiently structured networks can limit the diffusion of information about new

technologies and hence their adoption. This creates a rationale for development poli-

cies that support the diffusion of socially beneficial innovations. Interventions can

bypass social structures altogether and rely instead on modern technologies. Recent

trials show that agronomic information transmitted via SMS, phone lines and voice

messages can be effective at increasing yields, and discouraging the use of inefficient

pesticides (Cole and Fernando, 2012; Casaburi et al., 2014). Alternatively, interven-

tions can try to strengthen peer-to-peer transmission by incentivising farmers to share

information (Ben Yishay and Mobarak, 2012) or by fostering the creation of new links

(Vasilaky and Leonard, 2013).

Future work can use artefactual link-formation field experiments to inform the de-

velopment of diffusion policy in two ways. First, it can further explore link-formation

heuristics in specific settings. Program design should ensure compatibility with those

heuristics. For example, where individuals preferentially attach to the ‘most popular’

farmers, peer-to-peer extension programs can rely on a few, prominent injection points.

Where links are reciprocal and less centralised, different models may be required. Sec-

ond, experimental designs can help develop our understanding of how social features

impact network formation and potentially limit peer-to-peer diffusion. Further study

of the effects of group categorisation using natural groups is required. Within-group

status differentiation offers a second important avenue for exploration.
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7 Appendix

7.1 Formal derivation of the rules

7.1.1 Notation

We define some basic notation following Goyal (2007). Let N=(1,2,..,n) be the set of

players. In T1, each player i chooses a (pure) strategy gi = (gi1, gi2, ..., gii−1, gii+1, ..., gin)29,

which is a vector of directed links gi j ∈ {0, 1}. In T2, on the other hand, every

player chooses a strategy gi = (g1i , g2i , ..., gi−1i , gi+1i , ..., gni), a vector of directed links

g ji ∈ {0, 1}. Let Γi be the set of possible values of gi .
30 Γ = Γ1 × Γ2 × ...× Γn is the

set of all possible combinations of player strategies. The vector of player strategies

g = (g1, g2, ..., gn), drawn from Γ, can be represented as a directed network. g + i j is

the network obtained from adding the link gi j = 1 to network g.

In our game player i receives the prize if he is the winner of the prize lottery, or if

he is connected to the winner via a path of links. A path from player i to player j is a

set of links such that: gi y = g yw = ...= gz j = 1. A direct link is a path of length 1. The

notation i→g j indicates that in network g there is a path from i to j. If the path i→g j

exists, we say that play i reaches player j network g. In this case, player i is assigned

the prize whenever player j is assigned the prize. A path i →g j, on the other hand,

has no implication on whether player j is assigned the prize when player i is assigned

the prize.

We need to introduce two crucial concepts for our analysis. First, let N j(g) = {k ∈

N | j →g k} and µ j(g) = |N j(g)|. µ j(g) represents the number of players whom player

j reaches in network g. Sometimes we want to exclude from the count the path from

player j to player i. Let N ji(g) = {k ∈ N \ i| j→g k} and µ ji(g) = |N ji(g)|. µ ji(g) is the

number of players whom player j reaches in network g, excluding player i. We call

µ ji(g) the reach of player j in network g.

Second, let N− j(g) = {k ∈ N |k →g j} and µ− j(g) = |N− j(g)|. µ− j(g) represents

the number of players who reach player j in network g. Again, we sometimes need

to exclude the path from player i to player j. Let N− ji(g) = {k ∈ N \ i|k →g j} and

µ− ji(g) = |N− ji(g)|. µ− ji(g) is the number of players who reach player j in network

g, excluding player i. We call µ− ji(g) the in- reach of player j in network g.

29Link from player i to player i are ruled out.
30In both T1 and T2, we impose that at most one link can be equal to 1. Thus, there are n possible values

of of gi: n-1 possible links plus the strategy of establishing no links at all.
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The notions of µ j and µ− j should not be confused with the most common notions

of out-degree and in-degree, which represent the number of direct links of a player in

the network.31

Network g determines an expected payoff π j(g) for each player. This is simply

calculated as the value of the prize, which we normalise to 1, times the probability of

winning the prize, which is equal to the fraction of players accessed by player j:

π j(g) =
1+µ j(g)

n
(11)

7.1.2 Rule 1

We assume that in T1 player i chooses strategy gi to maximise expected payoff. That

is, he has to pick the partner j such that:

max
j
πi(g + i j) (12)

Notice that when i has the turn Ni(g) = {∅} and µi(g) = 0. In the first round of the

game gi has all of its entries equal to zero. In the second round, the decision maker

has to consider the game as if gi had only zero entries, as the link specified in the first

round is removed once he declares his second-round strategy.

Proposition 1. Player i maximises πi(g+ i j) by choosing the partner with the maximum

value of µ ji(g) in the network g.

Proof. Rewrite πi(g + i j) as: 1+µi(g+i j)
n

. Notice that, as µi(g) = 0, µi(g + i j) =

1+µ ji(g). Thus πi(g + i j) =
2+µ ji(g)

n
, which is monotonically increasing in µ ji(g). �

7.1.3 Rule 2

Let player i in T1 have a utility function (3). The gain in utility obtained from a g ji

link can be summarised as follows:

31The formal definitions of out-degree and in-degree are as follows. Let N d
i (g) = { j ∈ N |gi j = 1} be the set

of players with whom player i is directly linked. µd
i = |N

d
i (g)| is the number of players to whom with whom

player i is directly linked. This is the out-degree of player i. N d
−i(g = { j ∈ N |g ji = 1}, on the other hand, is

the set of players j such that g ji = 1. µd
−i = |N

d
−i(g)| is the in-degree: the number of players who have a direct

link to i.
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ui(g + ji)− ui(g) = πi(g + ji)−πi(g) + γ
∑

k∈N\i

πk(g + ji)−πk(g)

= γ
∑

k∈N\i

πk(g + ji)−πk(g)

= γ f (g + ji) (13)

where f (g + ji) =
∑

k∈N\i πk(g + ji)−πk(g). In T2 a link as no effect on player

i’s reach, nor on his effected payoff. However, player i has a preference for links that

maximise the increase in the expected payoff of the other players. f (g + ji) measures

the increase in expected payoff for the other players. To study how f (g+ ji) is related

to player j’s position in the network, there are two cases we need to consider.

Case 1: j /∈ Ni(g). Here f (g + ji) can be simply expressed as:

�

µi(g) + 1
�

�

µ− ji(g) + 1
�

(14)

To derive (14), we first need to show the following property of networks in T2.

Lemma 1. In T2, when it is player i’s turn to play, if j /∈ Ni(g), no player in j ∪ N− j(g)

reaches a player in i ∪ Ni(g).

Proof of lemma. We refer to gi j = 1 as an ‘outgoing’ link for player i and g ji = 1

as an ‘incoming’ link. In T2, players can have have multiple ‘outgoing’ links, but can

have at most one ‘incoming’ link. When it is player i’s turn to play, player i has no

‘incoming’ links. He may have one or more ‘outgoing’ links, in which case Ni(g) is

nonempty. Every individual k in Ni(g) has exactly one ‘incoming’ link. This ‘incoming’

link is either a link with i (gik = 1), or it is a link with a third player z in Ni(g) (i→g z).

Thus, no player in the set i ∪Ni(g) has an ‘incoming’ link with a player outside the set

i ∪ Ni(g). If a player j is not in Ni(g), he cannot reach any player in i ∪ Ni(g).

Furthermore for j /∈ Ni(g), i ∪ Ni(g) ∩ N− j(g) = ;. Player i does not reach player

j. Further, No player reached by player i reaches player j. If some player reached

by player i reaches player j, then player j would be part of Ni(g), which contradicts

j /∈ Ni(g). This concludes the proof. �
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If j /∈ Ni(g), and player i sets g ji = 1, player j now reaches player i and all players

in Ni(g). Lemma 1 tells us that none of the players in Ni(g) was previously reached

by player j. In other words, each individual in Ni(g) allows player j to observe new

information. Player j’s expected payoff increases by µi(g) + 1.

When player i sets g ji = 1, all individuals in N− j(g) now reach player i and all

players in Ni(g). Lemma 1 tells us that none of the players in Ni(g) was previously

reached by any player in N− j(g). The expected payoff of each player in N− j(g) also

goes up by µi(g)+1. There are µ− j(g) players in N− j(g). So the sum of expected payoff

among players increases by
�

µi(g) + 1
�

�

µ− j(g) + 1
�

. As j /∈ Ni(g), µ− j(g) = µ− ji(g).

We can express the increase in expected payoff also as:
�

µi(g) + 1
�

�

µ− ji(g) + 1
�

.

Case 2: j ∈ Ni(g). Now g ji = 1 link creates a cycle. The effect on f (g + ji) is

smaller than that of a link to a player outside of Ni(g) who has the same in-reach. This

is because some of the information that player j shares with the players who reach him

is redundant. Figure XIII shows this with an example. In the example, player A has a

reaches player C through player B. If player A links to player C, player C now reaches

both A and B, and hence µC increases by 2. µB, however, increases by 1 only, as player

B already observes player C. In other words, some of the information given to player B

is redundant.32

The simple heuristic of choosing the player with the maximum in-reach approxi-

mates well the more complicated rule which would calculate f (g+ ji) for every possi-

ble partner j and pick the partner with the highest value of f (g + ji).

1. When Ni(g) = ;, f (g + ji) monotonically increases in j’s in-reach. In this case,

rule 2 maximises f (g + ji).

2. When Ni(g) 6= ; and no player with maximum in-reach is in the Ni(g) set, rule 2

maximises f (g + ji).

32If Ni(g) is a line, when player i creates a link to a player j ∈ Ni(g), the first player in the i→g j path, call

him k, experiences an increase in µk(g) of 1, the second player an increase of 2, and so on.. until we to get

to player j, who gets an increase in µ j(g) of µ− ji(g) + 1. Thus we can express f (g + ji) as

f (g + i j) =
µ− ji+1
∑

n=1

n

=
(µ− ji + 1)(µ− ji + 2)

2
(15)

If Ni(g) is a tree, this expression would become more complicated.
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Figure XIII: Effect of a g ji link
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3. When Ni(g) 6= ; and at least some of the players in the set of individuals with

maximum in-reach are in Ni(g), rule 2 sometimes fails to maximise f (g + ji).

The latter occurs when a link to a player outside of Ni(g) who does not have

maximum in-reach has a larger effect on f (g+ ji) than a link to a player in Ni(g)

with maximum in-reach. Rule 2 would suggest the wrong partner here.

To minimise the likelihood of the third scenario, we formulate rule 2 in terms of

µ− ji(g), as opposed to µ− ji(g). That is, we do not consider player i in the count of

player j’s in-reach. This only penalises players in Ni(g), and makes it less likely that

rule 2 selects them when players outside of Ni(g) with a higher potential impact on

f (g + ji) are available.
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Figure XIV: Example of a network
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(b) Rule 2: Maximum in-reach
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(c) Rule 3: Minimum reach

E has the turn. The probability of winning the prize is reported next to each player. Panel (b) and (c) show

network g + ji, where the new link is chosen following link-formation rule 2 or link-formation rule 3.
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7.2 Figures

Figure XV: Link formation process with mixed rules

Simulation where rule 3 is played with probability p and rule 2 with probability 1-p. 500 simulation for

each level of p.

Figure XVI: Simulated time series of average reach

Each rule is simulated 500 times.
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Figure XVII: Simulated effect of group identity concerns on network structure

(a) Rule 2 (b) Rule 3

Weight 0 simulations show efficiency when all players play rule 2 (panel a) or rule 3 (panel b). Weight 2

simulations show efficiency when players value a link to an in-group player as much as 2 units of in-reach

(panel a) or two units of reach (panel b). We report results summarising 100 simulation for each of the 4

rules.

Figure XVIII: Cumulative distribution of mistakes in understanding questions

(a) T1 (b) T2
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Figure XIX: Efficiency in no-identity sessions and under rule 1

(a) Histogram (b) Kernel density estimate and means

Figure XX: Overlap in decisions and in choice sets

(a) Best response sets (b) Decisions
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Figure XXI: What explains links that are not consistent with the archetypal rules?

(a) Links to the ‘most popular’ player (b) ‘Reciprocal’ links

The category ‘most popular’ shows the relative frequency of decisions consistent with rule 5 and not

consistent with the ‘efficiency-maximising’ and ‘Rawlsian’ rules. The category ‘reciprocal’ shows relative

frequency of decisions consistent with rule 6 and not consistent with the ‘efficiency-maximising’ and

‘Rawlsian’ rules. Only data for sessions with no knowledge of group identity is shown.

Figure XXII: Relative frequency of decisions consistent with the hypothesised rules. Best

Response Sets not fully overlapping

(a) T1 (b) T2

T1 sessions: rounds in which the set of individuals with maximum reach is not perfectly overlapping with

the set of individuals with minimum in-reach. T2 sessions: rounds in which the set of individuals with

maximum in-reach is not perfectly overlapping with the set of individuals with minimum reach.
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Figure XXIII: Relative frequency of individuals who play twice consistently with the hy-

pothesised rules

(a) T1 (b) T2

Figure XXIV: Efficiency simulation

In the baseline simulation 5 percent of decisions follow rule 1, 65 percent follow rule 4, and 30 percent

follow rule 5.
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Figure XXV: Distribution of coin allocations to in-group partner

Figure XXVI: ‘How many of the other 5 players in the session do you think answered YES

to the previous question?’ Distribution of expectations
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7.3 Tables

Table VI: Balance test: identity sessions

Age Edu UpperCaste LandOwned LandCult NetSize

(1) (2) (3) (4) (5) (6)

Identity -.194 .029 -.087 .063 .101 -.201
(1.764) (.056) (.067) (.517) (.468) (1.100)

Obs. 479 466 433 475 470 428

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is

not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom

the farmer exchanges advice on agricultural matters. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the

session level reported in parentheses.

Table VII: Balance test: T2 sessions

Age Edu UpperCaste LandOwned LandCult NetSize

(1) (2) (3) (4) (5) (6)

T2 -1.582 -.028 -.052 -.085 -.049 1.293
(1.761) (.056) (.068) (.514) (.465) (1.089)

Obs. 479 466 433 475 470 428

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is

not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom

the farmer exchanges advice on agricultural matters. . Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at

the session level reported in parentheses.

Table VIII: Balance test: identity sessions in T1

Age Edu UpperCaste LandOwned LandCult NetSize Und

(1) (2) (3) (4) (5) (6) (7)

Identity -2.378 .091 -.040 .077 .141 .111 -.267
(2.544) (.081) (.098) (.737) (.657) (1.102) (.178)

Obs. 235 232 215 234 231 211 240

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is

not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom

the farmer exchanges advice on agricultural matters. Und is the number of mistakes in the initial 7 understanding questions.

Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.
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Table IX: Balance test: identity sessions in T2

Age Edu UpperCaste LandOwned LandCult NetSize Und

(1) (2) (3) (4) (5) (6) (7)

Identity 1.879 -.033 -.135 .046 .061 -.482 -.224
(2.400) (.076) (.093) (.733) (.673) (1.877) (.197)

Obs. 244 234 218 241 239 217 246

OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if respondent is

not from a schedule caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported number of peers with whom

the farmer exchanges advice on agricultural matters. Und is the number of mistakes in the initial 8 understanding questions.

Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table X: Reach and efficiency in final networks

Treatment Average reach Efficiency

T1no 3.258 .652

T1id 2.895 .582

T2no 3.238 .648

T2id 3.333 .666

Total 3.167 .637

Table XII: Dyadic linear probability model (7)

(1) (2) (3) (4)

reach j .054 .055 -.042 -.039
(.001)∗∗∗ (.001)∗∗∗ (.001)∗∗∗ (.014)∗∗

in-reach j -.033 -.031 .052 .051
(.009)∗∗∗ (.092)∗ (.001)∗∗∗ (.002)∗∗∗

Const. .373 .395 .264 .279
(.002)∗∗∗ (.006)∗∗∗ (.002)∗∗∗ (.094)∗

Obs. 1200 910 1260 940

Cluster N 20 20 21 21

Sample T1no T1no T2no T2no

Controls 4 4

Dyadic OLS regression. Dependent variable is a dummy which takes a value of one if i chose to establish a link with j. Each regression

contains controls for the round and for each possible pairing of map positions. Regressions in columns 2 and 4 include controls for age,

land owned, land cultivated, number of contacts in real information networks, number of mistakes in the initial understanding

questions and dummies for having completed secondary education, for being Hindu, and for not belonging to a backward caste.

Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors corrected for clustering at session level. P-values obtained with wild

bootstrap-t procedure reported in parentheses.
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Table XI: Summary statistics of allocation, expectations and norms

Variable Obs Mean Std. Dev. Min Max

Amount allocated to in-group partner 483 36.066 11.659 0 60

In-group bias in allocation 483 .542 .499 0 1

Agrees with norm of homophily 483 .571 .495 0 1

No. other players expected to agree with the norm 478 3.513 1.309 0 5

Expects last link to be an in-group link 402 .385 .487 0 1
‘Amount allocated to in-group partner’ is the number of Rupees, out of 60, allocated to the in-group partner in the initial allocation

task. ‘In-group bias in allocation’ is a dummy equal to 1 if the player has allocated more than half of the endowment to the in-group

partner in the allocation task. ‘Agrees with norm of homophily’ is a dummy equal to 1 if the player answered yes to the question ‘In the

link formation game you have just played, do you think a player should only link to a peer of his own group?’. ‘No. other players

expected to agree with the norm’ is the answer to the question ‘How many of the other 5 players in the session do you think answered

YES to the previous question?’. There is 1 missing value. We also set to missing answers that are greater than 5. ‘Expects last link to be

an in-group link’ is a dummy equal to 1 if the respondent expects the player with the last turn choose an in-group link. This variable

excludes the 81 players who have the last turn in the session.

Table XIII: Dyadic linear probability model (7)

(1) (2)

max reach j .121
(.012)∗∗

min in-reach j -.0004
(.931)

max in-reach j .122
(.022)∗∗

min reach j .059
(.202)

Reciprocali j -.093 -.010
(.006)∗∗∗ (.399)

Most popular j -.031 -.011
(.308) (.685)

Const. .402 .225
(.001)∗∗∗ (.036)∗∗

Obs. 910 940

Sample T1no T2no

Cluster N 20 21

Controls 4 4

Dyadic OLS regression. Dependent variable is a dummy which takes a value of one if i chose to establish a link with j. Each regression

contains controls for the round and for each possible pairing of map positions. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.

Standard errors corrected for clustering at session level. P-values obtained with wild bootstrap-t procedure reported in parentheses.

Panel b reports the F statistics (and p value in parenthesis) for a Wald test of the equality of coefficients.
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Table XIV: Linear probability model (8): in-group links

T1 T2

Identity session .117 .046
(.055)∗∗ (.056)

Const. .282 .268
(.037)∗∗∗ (.033)∗∗∗

Obs. 438 447

Sample T1 T2

Cluster N 40 41

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. First turn, first

round decisions are dropped. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported

in parentheses.

Table XV: Linear probability model (8): efficiency-minded links

T1 T2

Identity session -.0003 -.080
(.065) (.062)

Const. .473 .519
(.044)∗∗∗ (.045)∗∗∗

Obs. 438 447

Sample T1 T2

Cluster N 40 41

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards a partner with the maximum

out-degree (in T1) and maximum in-degree (in T2). First turn, first round decisions are dropped. Confidence: ***↔ 99%, **↔
95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table XVI: Linear probability model (8): Rawlsian links

T1 T2

Identity session -.013 -.038
(.055) (.055)

Const. .600 .649
(.033)∗∗∗ (.036)∗∗∗

Obs. 438 447

Sample T1 T2

Cluster N 40 41

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards a partner with the minimum

in-degree (in T1) and minimum out-degree (in T2). First turn, first round decisions are dropped. Confidence: ***↔ 99%, **↔ 95%,

*↔ 90%. Standard errors clustered at the session level reported in parentheses.
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Table XVII: Linear probability model (8): in-group links

Restricted sample

T1 T2

Identity session .139 .053
(.066)∗∗ (.079)

Const. .298 .242
(.048)∗∗∗ (.051)∗∗∗

Obs. 207 215

Sample T1 T2

Cluster N 40 41

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. Sample

restricted to ‘efficiency-minded’ links. First turn, first round decisions are dropped. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.

Standard errors clustered at the session level reported in parentheses.

Table XVIII: Linear probability model (9): in-group links T1 treatment

(1) (2) (3) (4)

Identity sessions .095 .133 -.014 .191
(.073) (.077)∗ (.115) (.073)∗∗∗

Bias in allocation taski .002
(.084)

Biasi* Identity sessions .044
(.124)

Homophily Normi .055
(.080)

Normi*Identity sessions -.027
(.097)

Homophily norm expectationi -.014
(.024)

Norm expectationi*Identity sessions .040
(.032)

Ingroup link expectationi .074
(.072)

Link expectationi*Identity sessions -.133
(.107)

Obs. 438 437 435 371

Sample T1 T1 T1 T1

Cluster N 40 40 40 40

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. “Bias in

allocation task" is a dummy equal to one if the player has allocated more than half of the dictator endowment to the in-group partner.

“Homophily norm" is a dummy equal to one if the player has agreed with the statement of the norm of homophily. “Homophily norm

expectation" captures the number of other players that the individual expects to agree with the norm of homophily. “in-group link

expectation" is a dummy equal to one if the player expects the last player to choose an in-group link. First turn, first round decisions

are dropped. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.
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Table XIX: Linear probability model (9): in-group links T2 treatment

(1) (2) (3) (4)

Identity sessions .014 .001 -.080 .024
(.080) (.073) (.133) (.060)

Bias in allocation taski -.015
(.074)

Biasi*Identity sessions .054
(.111)

Homophily normi -.011
(.082)

Normi*Identity sessions .083
(.103)

Homophily norm expectationi -.032
(.021)

Norm expectationi*Identity sessions .034
(.040)

Ingroup link expectationi .018
(.064)

Link expectationi*Identity sessions .178
(.100)∗

Obs. 447 447 440 371

Sample T2 T2 T2 T2

Cluster N 41 41 41 41

Linear Probability Model. Dependent variable takes the value of 1 if link d in session s is towards an in-group partner. “Bias in

allocation task" is a dummy equal to one if the player has allocated more than half of the dictator endowment to the in-group partner.

“Homophily norm" is a dummy equal to one if the player has agreed with the statement of the norm of homophily. “Homophily norm

expectation" captures the number of other players that the individual expects to agree with the norm of homophily. “in-group link

expectation" is a dummy equal to one if the player expects the last player to choose an in-group link. First turn, first round decisions

are dropped. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table XX: Linear probability model: understanding in T1

Rule 1 Rule 4 Reciprocal Most Popular Ingroup

(1) (2) (3) (4) (5)

Identity sessions -.008 -.030 -.086 .120 .105
(.065) (.069) (.043)∗∗ (.052)∗∗ (.085)

Understandingi* Identity sessions=0 .016 -.003 -.035 .032 -.010
(.034) (.041) (.023) (.029) (.034)

Understandingi* Identity sessions=1 .031 .017 .027 -.043 -.009
(.026) (.029) (.017) (.024)∗ (.034)

Const. .491 .633 .153 .363 .304
(.053)∗∗∗ (.057)∗∗∗ (.039)∗∗∗ (.037)∗∗∗ (.062)∗∗∗

Obs. 478 478 478 478 478

Sample T1 T1 T1 T1 T1

Culster N. 40 40 40 40 40

Linear Probability Model. Dependent variable takes the value of 1 if a link is consistent with the link-formation rule indicated in the

heading. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.
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Table XXI: Linear probability model: understanding in T2

Rule 2 Rule 3 Reciprocal Most Popular Ingroup

(1) (2) (3) (4) (5)

Identity sessions -.072 -.030 -.004 -.001 .053
(.059) (.051) (.031) (.041) (.055)

Understandingi* Identity sessions=0 .0009 .023 .017 -.022 .008
(.036) (.034) (.019) (.029) (.031)

Understandingi*Identity sessions=1 .042 .024 -.010 .007 .031
(.040) (.029) (.018) (.024) (.041)

Const. .559 .675 .088 .417 .264
(.044)∗∗∗ (.035)∗∗∗ (.023)∗∗∗ (.028)∗∗∗ (.032)∗∗∗

Obs. 488 488 488 488 488

Sample T2 T2 T2 T2 T2

Cluster N 41 41 41 41 41

Linear Probability Model. Dependent variable takes the value of 1 if a link is consistent with the link-formation rule indicated in the

heading. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.
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